首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of fertilizer regime with host-plant resistance in tomato   总被引:7,自引:0,他引:7  
The effect of fertilizer regime on trichome- and lamellar-based resistance in the wild tomato species, Lycopersicon hirsutum f. glabratum C.H. Mull accession PI 134417, to three insect pests of tomato, the tobacco hornworm, Manduca sexta (L.), the colorado potato beetle, Leptinotarsa decemlineata (Say), and the tomato fruitworm, Heliocoverpa zea (Boddie), was examined. Increasing the rate at which NPK fertilizer was applied, from 1.8 to 19.6 g/plant/week, reduced the trichome-based resistance of PI 134417 to M. sexta and L. decemlineata by lowering both the density of type VI (sensu Luckwill, 1943) glandular trichomes and the amount of 2-tridecanone contained in the tips of these trichomes. 2-Tridecanone is a toxic methyl-ketone responsible for glandular trichome-mediated resistance in PI 134417 to M. sexta and L. decemlineata. A similar increase in the application rate of NPK fertilizer reduced the lamellarbased resistance of PI 134417 to L. decemlineata and H. zea. The meachanisms for this reduction of resistance are unknown, but may be related to improved nutritional quality of hosts at higher fertilizer regimes.  相似文献   

2.
The resistance of accession PI 134417 of the wild tomato Lycopersicon hirsutum f. glabratum C. H. Mull to Manduca sexta (L.) (Lepidoptera: Spingidae) and Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) is conditioned by the high densities of 2-tridecanone-containing, glandular trichomes associated with the foliage. In laboratory experiments, rates of parasitism of M. sexta eggs by Telenomus sphingis (Ashmead) (Hymenoptera: Scelionidae) were lower among eggs on PI 134417 foliage than among eggs on foliage of the cultivated tomato L. esculentum Mill. (cv. Better Boy). The latter is characterized by a significantly lower density of type VI glandular trichomes than PI 134417 and an absence of 2-tridecanone. Parasitism by T. sphingis was also reduced among eggs on foliage of the F1 hybrid between PI 134417 and L. esculentum. The hybrid foliage lacks 2-tridecanone but has a density of type VI glandular trichomes that is intermediate between those of PI 134417 and L. esculentum, indicating that elevated densities of type VI glandular trichomes adversely affect T. sphingis. This conclusion was further substantiated by the finding that there were no differences among plant lines in the levels of parasitism of M. sexta eggs when the eggs were on foliage that had been divested of glandular trichomes.In bioassays in which T. sphingis adults or immatures in host eggs were exposed to filter paper treated with 2-tridecanone at rates comparable to those associated with PI 134417 foliage, 2-tridecanone was acutely toxic and caused high levels of mortality. In addition, at high concentrations, 2-tridecanone vapors were repellent to T. sphingis adults. However, when exposed to PI 134417 foliage, few T. sphingis adults were killed.Parasitism of M. sexta eggs was unaffected when the eggs were deposited by moths reared as fifth instar larvae on diet containing 2-tridecanone and/or 2-undecanone at levels comparable to those associated with PI 134417 foliage.  相似文献   

3.
Lycopersicon hirsutum G1.1560 is a wild accession of tomato that shows resistance to Oidium lycopersicum, a frequently occurring tomato powdery mildew. This resistance is largely controlled by an incompletely dominant gene Ol-1 near the Aps-1 locus in the vicinity of the resistance genes Mi and Cf-2/Cf-5. Using a new F2 population (n=150) segregating for resistance, we mapped the Ol-1 gene more accurately to a location between the RFLP markers TG153 and TG164. Furthermore, in saturating the Ol-1 region with more molecular markers using bulked segregant analysis, we were able to identify five RAPDs associated with the resistance. These RAPDs were then sequenced and converted into SCAR markers: SCAB01 and SCAF10 were L. hirsutum-specific; SCAE16, SCAG11 and SCAK16 were L. esculentum-specific. By linkage analysis a dense integrated map comprising RFLP and SCAR markers near Ol-1 was obtained. This will facilitate a map-based cloning approach for Ol-1 and marker-assisted selection for powdery mildew resistance in tomato breeding. Received: 21 June 1999 / Accepted: 1 December 1999  相似文献   

4.
SCAR markers linked to the common bean rust resistance gene Ur-13   总被引:1,自引:0,他引:1  
Rust in common bean (Phaseolus vulgaris L.) is caused by Uromyces appendiculatus Pers.:Pers. (Unger) which exhibits a high level of pathogenic diversity. Resistance to this disease is conditioned by a considerable number of genes. Pyramiding resistance genes is desirable and could be simplified by the use of molecular markers closely linked to the genes. The resistance gene Ur-13, present in the South African large seeded cultivar Kranskop, has been used extensively in the local breeding program. The purpose of this study was the development of a molecular marker linked to Ur-13. An F2 population derived from a cross between Kranskop and a susceptible (South African) cultivar Bonus was used in combination with bulked segregant analysis utilizing the amplified fragment length polymorphism (AFLP) technique. Seven AFLP fragments linked significantly to the rust resistance and five were successfully converted to sequence characterized amplified region (SCAR) markers. The co-dominant SCAR markers derived from a 405 bp EAACMACC fragment, KB126, was located 1.6 cM from the gene. Two additional SCAR markers and one cleaved amplified polymorphic sequence marker were located further from the gene. The gene was mapped to linkage group B8 on the BAT 93/Jalo EEP 558 core map (chromosome 3).  相似文献   

5.
Summary Incubation of Heliothis zea (Boddie) eggs on foliage of Lycopersicon hirsutum f. glabratum C.H. Mull (accession PI 134417) results in neonates with elevated levels of tolerance to the toxic effects of PI 134417 foliage attributable to 2-tridecanone found in the glandular trichomes which abound on that foliage. The neonates from such eggs are also shown to have elevated levels of tolerance to the carbamate insecticide carbaryl. Incubation of eggs in an atmosphere containing 2-tridecanone similarly produced elevated levels of tolerance to 2-tridecanone among resulting neonates, indicating that 2-tridecanone is the likely inducing agent and that exposure to 2-tridecanone vapor, which is known to emanate from PI 134417 foliage, is sufficient for induction. Analysis of the cytochrome P-450 content in gut microsomes of fifth instar larvae indicated that exposure of larvae to 2-tridecanone in artificial diet or to PI 134417 foliage resulted in significantly elevated levels of cytochrome P-450 relative to larvae fed diet without 2-tridecanone or foliage of L. esculentum which contains no 2-tridecanone. In addition, removal of the glandular trichomes from PI 134417 foliage eliminated the ability of that foliage to induce elevated levels of cytochrome P-450. These results provide circumstantial evidence that cytochrome P-450 may be involved in the induced tolerance to xenobiotics among neonates from eggs exposed to 2-tridecanone or PI 134417 foliage.Support for this research was provided by the USDA Competitive Research Grants Program in Biological Stress under Grant No. 83-CRCR-1-1241 and Grant No. 85-CRCR-1-1615, and the North Carolina Agricultural Research Service. Paper No. 10856 of Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC, USA 27650. Use of trade names does not imply endorsement of products named nor criticisms of similar ones not mentioned  相似文献   

6.
Host-plant resistance is the most economic and effective strategy for root-knot nematode (RKN) Meloidogyne incognita control in cotton (Gossypium hirsutum L.). Molecular markers linked to resistance are important for incorporating resistance genes into elite cultivars. To screen for microsatellite markers (SSR) closely linked to RKN resistance in G. hirsutum cv. Acala NemX, F1, F2, BC1F1, and F2:7 recombinant inbred lines (RILs) from intraspecific crosses and an F2 from an interspecific cross with G. barbadense cv. Pima S-7 were used. Screening of 284 SSR markers, which cover all the known identified chromosomes and most linkage groups of cotton, was performed by bulked segregant analysis, revealing informative SSRs. The informative SSRs were then mapped on the above populations. One co-dominant SSR marker CIR316 was identified tightly linked to a major resistance gene (designated as rkn1), producing amplified DNA fragments of approximately 221 bp (CIR316a) and 210 bp (CIR316c) in Acala NemX and susceptible Acala SJ-2, respectively. The linkage between CIR316a marker and resistance gene rkn1 in Acala NemX had an estimated distance of 2.1–3.3 cM depending on the population used. Additional markers, including BNL1231 with loose linkage to rkn1 (map distance 25.1–27.4 cM), BNL1066, and CIR003 allowed the rkn1 gene to be mapped to cotton linkage group A03. This is the first report in cotton with a closely linked major gene locus determining nematode resistance, and informative SSRs may be used for marker-assisted selection.  相似文献   

7.
White rust, caused by Albugo candida, is a very serious disease in crucifers. In Indian mustard (Brassica juncea), it can cause a yield loss to the extent of 89.9%. The locus Ac2(t) controlling resistance to white rust in BEC-144, an exotic accession of mustard, was mapped using RAPD markers. In the present study, we developed: (1) a more tightly linked marker for the white rust resistance gene, using AFLP in conjunction with bulk segregant analysis, and (2) a PCR-based cleaved amplified polymorphic sequence (CAPS) marker for the closely linked RAPD marker, OPB061000. The data obtained on 94 RILs revealed that the CAPS marker for OPB061000 and the AFLP marker E-ACC/M-CAA350 flank the Ac2(t) gene at 3.8 cM and 6.7 cM, respectively. Validation of the CAPS marker in two different F2 populations of crosses Varuna × BEC-144 and Varuna × BEC-286 was also undertaken, which established its utility in marker-assisted selection (MAS) for white rust resistance. The use of both flanking markers in MAS would allow only 0.25% misclassification and thus provide greater efficiency to selection.Communicated by C. Möllers  相似文献   

8.
Using the amplified fragment length polymorphism (AFLP) technique combined with a ”narrow-down” bulk segregant strategy enabled us to quickly identify 15 tightly linked AFLP markers to the Vf gene that confers resistance to the apple scab disease. High-resolution mapping placed all 15 AFLP markers within an interval of 0.6 cM around the Vf region; 7 of them were found to be inseparable from the Vf gene, 1 was localized left of, and the remaining 7 located right of the Vf gene. In addition, eight previously identified RAPD markers were also mapped, but only three, including M18, AM19, and AL07, were localized within this short interval, and none co-segregated with the Vf gene. The saturation of the Vf region with AFLP markers will accelerate both marker-assisted selection and map-based cloning. The advantages of this ”narrow-down” strategy, estimation of physical distances among AFLP markers, and their potential application are also discussed. Received: 22 December 1999 / Accepted: 25 March 2000  相似文献   

9.
A new source of resistance to the highly virulent and widespread biotype L of the Hessian fly, Mayetiola destructor (Say), was identified in an accession of tetraploid durum wheat, Triticum turgidum Desf., and was introgressed into hexaploid common wheat, Triticum aestivum L. Genetic analysis and deletion mapping revealed that the common wheat line contained a single locus for resistance, H31, residing at the terminus of chromosome 5BS. H31 is the first Hessian fly-resistance gene to be placed on 5BS, making it unique from all previously reported sources of resistance. AFLP analysis identified two markers linked to the resistance locus. These markers were converted to highly specific sequence-tagged site markers. The markers are being applied to the development of cultivars carrying multiple genes for resistance to Hessian fly biotype L in order to test gene pyramiding as a strategy for extending the durability of deployed resistance.Communicated by J. Dvorak  相似文献   

10.
Powdery mildew caused by Podosphaera xanthii is a major disease in melon crops, and races 1, 2, and 5 of this fungus are those that occur most frequently in southern Europe. The genotype TGR-1551 bears a dominant gene that provides resistance to these three races of P. xanthii. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), we identified eight markers linked to this dominant gene. Cloning and sequencing of the selected AFLP fragments allowed the development of six codominant PCR-based markers which mapped on the linkage group (LG) V. Sequence analysis of these markers led to the identification of two resistance-like genes, MRGH5 and MRGH63, belonging to the nucleotide binding site (NBS)-leucine-rich repeat (LRR) gene family. Quantitative trait loci (QTL) analysis detected two QTLs, Pm-R1-2 and Pm-R5, the former significantly associated with the resistance to races 1 and 2 (LOD score of 26.5 and 33.3; 53.6 and 61.9% of phenotypic variation, respectively), and the latter with resistance to race 5 (LOD score of 36.8; 65.5% of phenotypic variation), which have been found to be colocalized with the MRGH5 and MRGH63 genes, respectively. The results suggest that the cluster of NBS-LRR genes identified in LG V harbours candidate genes for resistance to races 1, 2, and 5 of P. xanthii. The evaluation of other resistant germplasm showed that the codominant markers here reported are also linked to the Pm-w resistance gene carried by the accession ‘WMR-29’ proving their usefulness as genotyping tools in melon breeding programmes.  相似文献   

11.
We have previously demonstrated that in the diploid rose population 97/9 resistance to the powdery mildew race 9 is controlled by a major dominant resistance gene, Rpp1. In the study reported here, we isolated several molecular markers closely linked to Rpp1 via bulked segregant analysis, with the gene being tagged in an interval of 5 cM between the two most adjacent markers. It was possible to convert the most closely linked amplified fragment length polymorphic (AFLP) marker into a sequence-characterised amplified region (SCAR) segregating in the same manner. Indirect mapping of Rpp1 in relation to the black spot resistance gene Rdr1 revealed no linkage between the two R genes. Furthermore, the genetic model based on a single dominant resistance gene was supported by the marker data.  相似文献   

12.
Barley yellow mosaic disease caused by the bymoviruses barley mild mosaic virus (BaMMV) and barley yellow mosaic virus (BaYMV) is one of the economically most important diseases of winter barley in Europe. In European barley breeding programmes, resistance is currently due to only two genes—rym4, which is effective against viruses BaMMV and BaYMV-1, and rym5, which is effective against BaYMV-2. Diversification of resistance is therefore an important task. Because the accession PI1963 confers immunity against all European strains of barley yellow mosaic disease and is not allelic to rym5, we have attempted to develop closely linked markers in order to facilitate the efficient introgression of this resistance into adapted germplasm. By means of restriction fragment length polymorphism analysis, we located a gene locus for resistance to BaMMV, BaYMV-1 and BaYMV-2 of PI1963 on chromosome 4HL using a mapping population (W757) comprising 57 doubled haploid (DH) lines. Subsequent tests for allelism indicated that the BaMMV resistance gene in PI1963 is allelic to rym11. Two DH populations, IPK1 and IPK2, comprising 191 and 161 DH lines, respectively, were derived from the initial mapping population W757 and used for further analysis. As random amplified polymorphic DNA development did not facilitate the identification of more closely linked markers, simple sequence repeat (SSR) analyses were conducted. For population IPK1, the closest SSRs detected were Bmac181 and Bmag353, which flank the gene at 2.1 cM and 2.7 cM, respectively. For the IPK2 population, the SSR markers HVM3 and Bmag353 are located proximally at 2.5 cM and distally at 8.2 cM, respectively. In order to develop markers more tightly linked to rym11, a targeted amplified fragment length polymorphism (AFLP) marker identification approach was adopted using bulks comprising lines carrying recombination events proximal and distal to the target interval. Using this approach we identified six AFLP markers closely linked to rym11, with the two markers, E56M32 and E49M33, co-segregating with rym11 in both populations. The SSRs and AFLPs identified in this study represent useful tools for marker-assisted selection.  相似文献   

13.
White pine blister rust (WPBR), caused by Cronartium ribicola, is a devastating disease in Pinus monticola and other five-needle pines. Pyramiding a major resistance gene (Cr2) with other resistance genes is an important component of integrated strategies to control WPBR in P. monticola. To facilitate this strategy, the objective of the present study was to identify leucine-rich repeat (LRR) polymorphisms, amplified fragment length polymorphisms (AFLPs), and sequence characterized amplified region (SCAR) markers linked to the western white pine Cr2 (BSA) gene for precise gene mapping. Bulked segregant analysis and haploid segregation analysis allowed the identification of 11 LRR polymorphisms and five AFLP markers in the Cr2 linkage. The closest LRR markers were 0.53 Kosambi cM from Cr2 at either end. After marker cloning and sequencing, AFLP marker EacccMccgat-365 and random polymorphic DNA marker U570–843 were converted successfully into SCAR markers. For a potential application in marker-assisted selection (MAS), these two SCAR markers were verified in two western white pine families. This study represents the first report of LRR-related DNA markers linked to C. ribicola resistance in five-needle pines. These findings may help further candidate gene identification for disease resistance in a conifer species.  相似文献   

14.
Targeted resistance gene mapping in soybean using modified AFLPs   总被引:7,自引:0,他引:7  
The soybean [Glycine max (Merr.) L.] linkage group F contains a vital region of clustered genes for resistance to numerous pathogens including the soybean mosaic virus resistance gene, Rsv1. In order to develop new genetic markers that map to this gene cluster, we employed a targeted approach that utilizes the speed and high-throughput of AFLP, but modified it to incorporate sequence information from the highly conserved nucleotide binding site (NBS) region of cloned disease resistance genes. By using a labeled degenerate primer corresponding to the p-loop portion of the NBS region of resistance genes, such as N, L6, and Rps2, we were able to quickly amplify numerous polymorphic bands between parents of a population segregating for resistance to Rsv1. Of these polymorphic bands, bulk segregant analysis revealed four markers that were closely linked to Rsv1. These markers were cloned and used as probes for RFLP analysis. The four clones mapped to within a 6-cM region surrounding Rsv1, the closest being 0.4 cM away from the gene. Sequence analysis showed that all four clones contain the p-loop sequence corresponding to the degenerate primer and that one of the four clones contains an open reading frame sequence which when translated is related to the NBS region of other cloned disease resistance genes. The rapid identification of four markers closely linked to Rsv1 in soybean demonstrates the utility of this method for generating markers tightly linked to important plant disease resistance genes. Received: 25 September 1999 / Accepted: 3 November 1999  相似文献   

15.
Bulked segregant analysis combined with AFLPs was used to identify molecular markers linked to the Rca2 gene conferring resistance to Colletotrichum acutatum pathogenicity group 2 which causes anthracnose in the octoploid strawberry Fragaria × ananassa. DNA bulks originating from a cross between the resistant cultivar ‘Capitola’ and the susceptible cultivar ‘Pajaro’ were screened with 110 EcoRI/MseI AFLP combinations. Four AFLP markers were found linked in coupling phase to Rca2 with recombination percentages between 0% and 17.7%. Among the four markers linked to the resistance gene, two were converted into SCAR markers (STS-Rca2_417 and STS-Rca2_240) and screened in a large segregating population including 179 genotypes. The Rca2 resistance gene was estimated to be 0.6 cM from STS-Rca2_417 and 2.8 cM from STS-Rca2_240. The presence/absence of the two SCAR markers was further studied in 43 cultivars of F. × ananassa, including 14 susceptible, 28 resistant, and one intermediate genotype. Results showed that 81.4% and 62.8% of the resistant/susceptible genotypes were correctly predicted by using STS-Rca2_417 and STS-Rca2_240, respectively. The 14 susceptible genotypes showed no amplification for either SCARs. These developed SCARs constitute new tools for indirect selection criteria of anthracnose resistance genotypes in strawberry breeding programs.  相似文献   

16.
The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH × RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F1 SH × RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.Communicated by J.G. Wenzel  相似文献   

17.
Host-plant resistance is the most economically viable and environmentally responsible method of control for Puccinia triticina, the causal agent of leaf rust in wheat (Triticum aestivum L.). The identification and utilization of new resistance sources is critical to the continued development of improved cultivars as shifts in pathogen races cause the effectiveness of widely deployed genes to be short lived. The objectives of this research were to identify and tag new leaf rust resistance genes. Forty landraces from Afghanistan and Iran were obtained from the National Plant Germplasm System and evaluated under field conditions at two locations in Texas. PI 289824, a landrace from Iran, was highly resistant under field infection. Further evaluation revealed that PI 289824 is highly resistant to a broad spectrum of leaf rust races, including the currently prevalent races of leaf rust in the Great Plains area of the USA. Eight F1 plants, 176 F2 individuals and 139 F2:3 families of a cross between PI 289824 and T112 (susceptible) were evaluated for resistance to leaf rust at the seedling stage. Genetic analysis indicated resistance in PI 289824 is controlled by a single dominant gene. The AFLP analyses resulted in the identification of a marker (P39 M48-367) linked to resistance. The diagnostic AFLP band was sequenced and that sequence information was used to develop an STS marker (TXW200) linked to the gene at a distance of 2.3 cM. The addition of microsatellite markers allowed the gene to be mapped to the short arm of Chromosome 5B. The only resistance gene to be assigned to Chr 5BS is Lr52. The Lr52 gene was reported to be 16.5 cM distal to Xgwm443 while the gene in PI 289824 mapped 16.7 cM proximal to Xgwm443. Allelism tests are needed to determine the relationship between the gene in PI 289824 and Lr52. If the reported map positions are correct, the gene in PI 289824 is unique.  相似文献   

18.
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (PST), is one of the most destructive diseases of common wheat (Triticum aestivum L.). To determine inheritance of stripe rust resistance and map the resistance gene(s) in wheat variety C591, F1, F2, and F3 progenies derived from the Taichung 29 × C591 cross were inoculated with Chinese PST race CY32 in the greenhouse. Genetic analysis identified a single dominant gene, temporarily designated YrC591. A total of 178 SSR and 130 AFLP markers were used to test the parents and resistant and susceptible bulks. From the bulk segregant analysis, seven polymorphic SSR and two AFLP markers were selected for genotyping the F2 population. SSR marker Xcfa2040-7B, and SCAR marker SC-P35M48 derived from AFLP marker P35M48 373 were identified to be closely linked to the resistance gene with genetic distances of 8.0 and 11.7 cM, respectively. The SSR markers mapped the resistance gene on chromosome arm 7BL. In the seedling test with five PST races, the reaction patterns of C591 were different from wheat cultivars or lines carrying Yr2 or Yr6 that also are found on chromosome 7B. The results indicate that YrC591 is probably a novel stripe rust resistance gene.  相似文献   

19.
Resistance in accession PI 134417 ofLycopersicon hirsutum f.glabratum toManduca sexta L. results from the presence of the methyl ketones 2-tridecanone and 2-undecanone in the type VI trichome glands on foliage of these plants. Short (24 h) and long term (neonate to adult) laboratory experiments usingM. sexta-resistant and susceptible foliage and methyl ketone treated filter paper disks were conducted to evaluate the direct (plant-mediated), and indirect (prey-mediated) effects of this resistance on two predators ofHelicoverpa zea eggs,Coleomegilla maculata (DeGeer) andGeocoris punctipes (Say). Direct effects of resistance were manifest as reduced egg consumption and increased mortality for both predators. Indirect effects were manifest as reduced egg consumption byG. punctipes, but were not observed forC. maculata. Results of experiments using methyl ketone-treated filter paper disks instead of foliage were similar.  相似文献   

20.
The objective of this investigation was to tag a locus for white rust resistance in a Brassica rapa ssp. oleifera F2 population segregating for this trait, using bulked segregant analysis with random amplified polymorphic DNA (RAPD) markers, linkage mapping and a candidate gene approach based on resistance gene analogs (RGAs). The resistance source was the Finnish line Bor4109. The reaction against white rust races 7a and 7v was scored in 20 seedlings from each self-pollinated F2 individual. The proportion of resistant plants among these F3 families varied from 0 to 67%. Bulked segregant analysis did not reveal any markers linked with resistance and, therefore, a linkage map with 81 markers was created. A locus that accounted for 18.4% of the variation in resistance to white rust was mapped to linkage group (LG) 2 near the RAPD marker Z19a. During the study, a bacterial resistance gene homologous to Arabidopsis RPS2 and six different RGAs were sequenced. RPS2 and five of the RGAs were mapped to linkage groups LG1, LG4 and LG9. Unfortunately, none of the RGAs could be shown to be associated with white rust resistance.Communicated by H.C. BeckerThe nucleotide sequence data reported has been deposited in the Genbank under the accession numbers AF315081–AF315087.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号