首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na(+)/Cl(-)-dependent neurotransmitter transporters form constitutive oligomers, the significance of which is not known. In soluble proteins, leucine heptad repeats drive dimerization; the rat gamma-aminobutyric acid transporter GAT-1 (rGAT) contains a motif reminiscent of a leucine heptad repeat in the second transmembrane helix (TM2). We substituted leucine residues in TM2 of rGAT by alanine and tested the ability of the resulting mutants to form oligomers by three methods of F?rster resonance energy transfer (FRET) microscopy. Replacement of one leucine (L97A) resulted in considerable loss of energy transfer, replacing two or more ablated it completely. Furthermore, intracellular trapping increased with the number of leucine substitutions. Only rGAT-L97A reached the cell surface to a sufficient amount such that, in intact cells, it was indistinguishable from wild type rGAT with respect to substrate transport, binding of inhibitors, and regulation by protein kinase C. However, in membrane vesicles prepared from transfected cells, all mutants were still functional. In addition, FRET was readily detected during maturation of wild type rGAT, when the bulk of the protein resided in the endoplasmic reticulum. Hence, our findings strongly argue for a role of oligomer formation during biosynthesis and subsequent delivery of the multimer from the endoplasmic reticulum to the plasma membrane.  相似文献   

2.
Dopaminergic neurotransmission is terminated by the action of the presynaptic dopamine transporter (DAT). It mediates Na(+)/Cl(-) -dependent re-uptake of extracellular dopamine (DA) into the cell, and is regarded as a major regulatory mechanism for synaptic transmission. Previous works have documented that protein kinase C (PKC) activator or inhibitor alters DA uptake by DAT, suggesting that PKC phosphorylation plays an important regulatory mechanism in DAT function. Based on the existence of consensus amino acid sequences for PKC phosphorylation, it has been postulated that PKC regulation of DAT is mediated by the direct phosphorylation of DAT protein. In this study, we try to discover whether the functional regulation of DAT by PKC is due to direct phosphorylation of DAT. The PKC null mutant hDAT, where all putative PKC phosphorylation sites are eliminated, has been constructed by the replacement of serine/threonine residues with glycines. The mutation itself showed no effect on the functional activities of DAT. The DA uptake activity of PKC null mutant was equivalent to those of wild-type hDAT (80-110% of wild-type). Phorbol ester activation of PKC inhibited DA uptake of wild-type hDAT by 35%, and staurosphorine blocked the effect of phorbol ester on DA uptake. The same phenomena was observed in PKC null mutant DAT, although no significant phosphorylation was observed by PKC activation. Confocal microscopic analysis using EGFP-fused DAT revealed that the activation of PKC by phorbol ester elicited fluorescent DAT to be internalized into the intracellular space both in wild-type and PKC null mutant DAT in a similar way. These results suggest that PKC-mediated regulation of DAT function is achieved in an indirect manner, such as phosphorylation of a mediator protein or activation of a clathrin-mediated pathway.  相似文献   

3.
The plasma membrane dopamine transporter (DAT) has an essential role in terminating dopaminergic neurotransmission by reuptake of dopamine into the presynaptic neurons. Therefore, the amount of DAT at the cell surface is a critical determinant of DAT function. In this study, we examined the role of the carboxyl terminus of DAT in trafficking of the transporter through the biosynthetic pathway to the plasma membrane. Live cell fluorescence microscopy and cell surface biotinylation were used to study the effects of systematic deletions and alanine substitutions in the carboxyl terminus on DAT localization. It was found that alanine substitutions of Lys-590 and Asp-600 significantly delayed the delivery of DAT to the plasma membrane because of retention of DAT in the endoplasmic reticulum (ER). Most surprising, mutation of Gly-585 to alanine completely blocked the exit of DAT from the ER and surface expression of the transporter. The effect of these three mutations on ER export of DAT was demonstrated in porcine aortic endothelial cells and the immortalized neuronal cell line 1RB3AN27. In primary cultures of rat embryonic midbrain neurons, DAT G585A, K590A, and D600A mutants were restricted to the cell soma and did not traffic to the dendrites or axonal processes. These data are consistent with the model whereby the local conformation and/or intramolecular interactions of the sequences of the DAT carboxyl terminus proximal to the last transmembrane domain are essential for the ER export of the transporter.  相似文献   

4.
The amount of dopamine transporter (DAT) present at the cell surface is rapidly regulated by the rates of DAT internalization to endosomes and DAT recycling back to the plasma membrane. The re-distribution of the transporter from the cell surface to endosomes was induced by phorbol ester activation of protein kinase C in porcine aortic endothelial cells stably expressing the human DAT. Inhibition of DAT recycling with the carboxylic ionophore monensin also caused significant accumulation of DAT in early endosomes and a concomitant loss of DAT from the cell surface, due to protein kinase C-independent constitutive internalization of DAT in the absence of recycling. Such monensin-induced relocation of DAT to endosomes was therefore utilized as a measure of the constitutive internalization of DAT. Knock-down of clathrin heavy chain or dynamin II by small interfering RNAs dramatically inhibited both constitutive and protein kinase C-mediated internalization of DAT. In contrast, neither monensin-dependent nor phorbol ester-induced re-distribution of DAT were affected by inhibitors of endocytosis through cholesterol-rich membrane microdomains. Mutational analysis revealed the potential importance of amino acid residues 587-597 in DAT internalization. Altogether, the data suggest that both constitutive and protein kinase C-mediated internalization of DAT utilize the clathrin-dependent endocytic pathway, but likely involve unconventional mechanisms.  相似文献   

5.
Dopaminergic neurotransmission is fine-tuned by the rate of removal of dopamine (DA) from the extracellular space via the Na(+)/Cl(-)-dependent DA transporter (DAT). DAT is a target of psychostimulants such as amphetamine (AMPH) and cocaine. Previously, we reported that AMPH redistributes the human DAT away from the cell surface. This process was associated with a reduction in transport capacity. This loss of transport capacity may result either from a modification of the function of DAT that is independent of its cell surface redistribution and/or from a reduction in the number of active transporters at the plasma membrane that results from DAT trafficking. To discriminate between these possibilities, we stably transfected HEK-293 cells with a yellow fluorescent protein (YFP)-tagged human DAT (hDAT cells). In hDAT cells, acute exposure to AMPH induced a time-dependent loss of hDAT activity. By coupling confocal imaging with patch-clamp whole-cell recordings, we have demonstrated for the first time that the loss of AMPH-induced hDAT activity temporally parallels the accumulation of intracellular hDAT. In addition, presteady-state current analysis revealed a cocaine-sensitive, voltage-dependent capacitance current that correlated with the level of transporter membrane expression and in turn served to monitor the AMPH-induced trafficking of hDAT. We found that the decrease in hDAT cell surface expression induced by AMPH was not paralleled by changes in the ability of the single transporter to carry charges. Quasi-stationary noise analysis of the AMPH-induced hDAT currents revealed that the unitary transporter current remained unaltered during the loss of hDAT membrane expression. Taken together, these data strongly suggest that the AMPH-induced reduction of hDAT transport capacity results from the removal of active hDAT from the plasma membrane.  相似文献   

6.
Dopamine levels in the brain are controlled by the plasma membrane dopamine transporter (DAT). The amount of DAT at the cell surface is determined by the relative rates of its internalization and recycling. Activation of protein kinase C (PKC) leads to acceleration of DAT endocytosis. We have recently demonstrated that PKC activation also results in ubiquitylation of DAT. To directly address the role of DAT ubiquitylation, lysine residues in DAT were mutated. Mutations of each lysine individually did not affect ubiquitylation and endocytosis of DAT. By contrast, ubiquitylation of mutants carrying multiple lysine substitutions was reduced in cells treated with phorbol ester to the levels detected in nonstimulated cells. Altogether, mutagenesis data suggested that Lys19, Lys27, and Lys35 clustered in the DAT amino-terminus are the major ubiquitin-conjugation sites. The data are consistent with the model whereby at any given time only one of the lysines in DAT is conjugated with a short ubiquitin chain. Importantly, cell surface biotinylation, immunofluorescence and down-regulation experiments revealed that PKC-dependent internalization of multilysine mutants was essentially abolished. These data provide the first evidence that the ubiquitin moieties conjugated to DAT may serve as a molecular interface of the transporter interaction with the endocytic machinery.  相似文献   

7.
Previous studies have shown that ethanol enhanced [(3)H]dopamine uptake in Xenopus oocytes expressing the dopamine transporter (DAT). This increase in DAT activity was mirrored by an increase in the number of transporters expressed at the cell surface. In the present study, ethanol potentiated the function of DAT expressed in HeLa cells but inhibited the function of the related norepinephrine transporter (NET). Chimeras generated between DAT and NET were examined for ethanol sensitivity and demonstrated that a 76-amino acid region spanning transmembrane domains (TMD) 2 and 3 was essential for ethanol potentiation of DAT function. The second intracellular loop between TMD 2 and 3 of DAT, which differs from that of NET by four amino acids, was explored for possible sites of ethanol action. Site-directed mutagenesis was used to replace each of these residues in DAT with the corresponding residue in NET, and the resulting cRNA were expressed in Xenopus oocytes. We found that mutations G130T or I137F abolished ethanol potentiation of DAT function, whereas the mutations F123Y and L138F had no significant effect. These results identify novel sites in the second intracellular loop that are important for ethanol modulation of DAT activity.  相似文献   

8.
The present study addressed the role of N-linked glycosylation of the human dopamine transporter (DAT) in its function with the help of mutants, in which canonical N-glycosylation sites have been removed (N181Q, N181Q,N188Q, and N181Q,N188Q,N205Q), expressed in human embryonic kidney-293 cells. Removal of canonical sites produced lower molecular weight species as did enzymatic deglycosylation or blockade of glycosylation, and all three canonical sites were found to carry sugars. Prevention of N-glycosylation reduced both surface and intracellular DAT. Although partially or non-glycosylated DAT was somewhat less represented at the surface, no evidence was found for preferential exclusion of such material from the plasma membrane, indicating that glycosylation is not essential for DAT expression. Non-glycosylated DAT was less stable at the surface as revealed by apparently enhanced endocytosis, consonant with weaker DAT immunofluorescence at the cell surface and stronger presence in cytosol in confocal analysis of the double and triple mutant. Non-glycosylated DAT did not transport dopamine as efficiently as wild-type DAT as judged from the sharp reduction in uptake V(max), and prevention of N-glycosylation enhanced the potency of cocaine-like drugs in inhibiting dopamine uptake into intact cells without changing their affinity for DAT when measured in membrane preparations prepared from these cells. Thus, non-glycosylated DAT at the cell surface displays appreciably reduced catalytic activity and altered inhibitor sensitivity compared with wild type.  相似文献   

9.
Z Lin  M Itokawa  G R Uhl 《FASEB journal》2000,14(5):715-728
Analyses of mutation effects can aid in understanding how large proteins act. The dopamine transporter (DAT) mediates complex actions in recognizing cocaine and in recognizing and translocating dopamine, sodium, and chloride. DAT proline residues, especially those in transmembrane (TM) domains, are good candidates for involvement in these DAT actions. We now report production of mutants substituting alanine and/or glycine residues for 16 prolines located in or near putative DAT TM domains. We examine effects of these modifications on DAT expression, dopamine uptake, and cocaine analog binding. Mutants in prolines located in five DAT TM domains and four connecting loops alter apparent DAT membrane targeting. Five mutations decrease dopamine affinities more than threefold without significantly decreasing cocaine analog affinities. One decreases cocaine analog affinity without decreasing dopamine affinity. Two mutations decrease affinities for both dopamine and cocaine analog. P101 is especially implicated in dopamine uptake. Alanine substitution for this proline yields dopamine V(max) values of less than 3% of wild-type values despite dopamine affinities more than fourfold higher than wild-type and normal Na(+) and Cl(-) dependence. These DAT proline mutants identify DAT regions likely for dopamine translocation and for recognition of dopamine and cocaine.  相似文献   

10.
Ala and Gly substitutions for Pro 101 (P101) located in transmembrane domain 2 of the dopamine transporter (DAT) abolished transport activity but did not disrupt plasma membrane expression. Due to the high conservation of P101 in all neurotransmitter transporters and the capability of Pro to add flexibility to helices, we hypothesized that P101 contributes to the dynamic feature of substrate translocation. To test this hypothesis, here we analysed transport activity for DAT mutants where this Pro was mutated into different amino acids, including Ser, Val, Leu and Phe. The transmembrane domain 2 helix of P101F, unlike the other mutants, was computationally predicted to have a Van der Waals energy threefold higher than the wild-type helix. P101F mutant expression was consistently disrupted in COS cells. Among all the other mutants that express normally, P101V, with a side-chain size close to that of Pro, restores the transport activity of P101A by sevenfold. Most importantly, P101V, P101L and P101S display negative-dosage effects on dopamine (DA) transport, i.e. the velocity-concentration curve for DA uptake does not show a plateau with increasing [DA] but rather peaks and then goes down. These data support the view that P101 of DAT plays an essential role in DA translocation.  相似文献   

11.
Previously, we reported that Phe105 in transmembrane domain 2 of the mouse dopamine transporter (DAT) is crucial for high-affinity cocaine binding. In the current study, we investigated whether other residues surrounding Phe105 also affect the potency of cocaine inhibition. After three rounds of sequential random mutagenesis at these residues, we found a triple mutant (L104V, F105C and A109V) of mouse DAT that retained over 50% uptake activity and was 69-fold less sensitive to cocaine inhibition when compared with the wild-type mouse DAT. The triple mutation also resulted in a 47-fold decrease in sensitivity to methylphenidate inhibition, suggesting that the binding sites for cocaine and methylphenidate may overlap. In contrast, the inhibition of dopamine uptake by amphetamine or methamphetamine was not significantly changed by the mutations, suggesting that the binding sites for the amphetamines differ from those for cocaine and methylphenidate. Such functional but cocaine-insensitive DAT mutants can be used to generate a knock-in mouse line to study the role of DAT in cocaine addiction.  相似文献   

12.
Compelling evidence has been provided that Na(+) and Cl(-)-dependent neurotransmitter transporter proteins form oligomeric complexes. Specific helix-helix interactions in lipid bilayers are thought to promote the assembly of integral membrane proteins to oligomeric structures. These interactions are determined by selective transmembrane helix packing motifs one of which is the Glycophorin A motif (GxxxG). This motif is present in the sixth transmembrane domain of most transporter proteins. In order to investigate, whether this motif is important for proper expression and function of the serotonin transporter (SERT), we have analysed the effect of mutating the respective glycine residues Gly338 and Gly342 to valine upon transient expression of the respective cDNAs in HEK293 cells. As revealed by western blotting, wildtype SERT is found in monomeric and dimeric forms while both mutants are expressed as monomers solely. Confocal microscopy revealed that the wildtype SERT is expressed at the cell surface, whereas both mutant proteins are localised in intracellular compartments. Failure of integration into the cell membrane is responsible for a total loss of [(3)H]5HT uptake capability by the mutants. These findings show that in the SERT protein the integrity of the GxxxG motif is essential for dimerisation and proper targeting of the transporter complex to the cell surface.  相似文献   

13.
The mechanisms whereby 1-methyl-4-phenylpyridinium (MPP(+)) mediates cell death and Parkinsonism are still unclear. We have shown that dopamine transporter (DAT) is required for MPP(+)-mediated cytotoxicity in HEK-293 cells stably transfected with human DAT. Furthermore, MPP(+) produced a concentration- and time-dependent reduction in the uptake of [3H]dopamine. We observed a significant decrease in [3H]WIN 35428 binding in the intact cells with MPP(+). The saturation analysis of the [3H]WIN 35428 binding obtained from total membrane fractions revealed a decrease in the transporter density (B(max)) with an increase in the dissociation equilibrium constant (K(d)) after MPP(+) treatment. Furthermore, biotinylation assays confirmed that MPP(+) reduced both plasma membrane and intracellular DAT immunoreactivity. Taken together, these findings suggest that the reduction in cell surface DAT protein expression in response to MPP(+) may be a contributory factor in the down-regulation of DAT function while enhanced lysosomal degradation of DAT may signal events leading to cellular toxicity.  相似文献   

14.
The sodium-dependent transporters for dopamine, norepinephrine, and serotonin that regulate neurotransmission, also translocate the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)). Previous studies implicated residues in transmembrane helix (TMH) XI of DAT as important sites for MPP(+) transport. We examined the importance of TMH XI residues F551 and F556 for MPP(+) translocation by human SERT. Mutations at hSERT F556, but not F551, reduced both 5-HT and MPP(+) transport compared to wild type. However, F556S/hSERT showed a reduction in surface expression explaining the decrease of transport activity for 5-HT, but did not account for the decrease in MPP(+) transport observed. Cysteine mutants at those positions confirmed the accessibility of hSERT/F556 to different methanethiosulfonate (MTS) reagents, suggesting its presence in a hydrophilic environment of the protein. In the presence of MTSET, current induced by 5-HT and MPP(+) was inhibited at the F556C mutant. In agreement with our homology model of SERT, based on the leucine transporter (LeuT(Aa)) from Aquifex aeolicus structure, these results are consistent with the hypothesis that a portion of TMH XI lines the entrance into the substrate permeation pathway.  相似文献   

15.
Purine transport into the protozoan parasite Toxoplasma gondii plays an indispensable nutritional function for this pathogen. To facilitate genetic and biochemical characterization of the adenosine transporter of the parasite, T. gondii tachyzoites were transfected with an insertional mutagenesis vector, and clonal mutants were selected for resistance to the cytotoxic adenosine analog adenine arabinoside (Ara-A). Whereas some Ara-A-resistant clones exhibited disruption of the adenosine kinase (AK) locus, others displayed normal AK activity, suggesting that a second locus had been tagged by the insertional mutagenesis plasmid. These Ara-A(r) AK+ mutants displayed reduced adenosine uptake capability, implying a defect in adenosine transport. Sequences flanking the transgene integration point in one mutant were rescued from a genomic library of Ara-A(r) AK+ DNA, and Southern blot analysis revealed that all Ara-A(r) AK+ mutants were disrupted at the same locus. Probes derived from this locus, designated TgAT, were employed to isolate genomic and cDNA clones from wild-type libraries. Conceptual translation of the TgAT cDNA open reading frame predicts a 462 amino acid protein containing 11 transmembrane domains, a primary structure and membrane topology similar to members of the mammalian equilibrative nucleoside transporter family. Expression of TgAT cRNA in Xenopus laevis oocytes increased adenosine uptake capacity in a saturable manner, with an apparent K(m) value of 114 microM. Uptake was inhibited by various nucleosides, nucleoside analogs, hypoxanthine, guanine, and dipyridamole. The combination of genetic and biochemical studies demonstrates that TgAT is the sole functional adenosine transporter in T. gondii and a rational target for therapeutic intervention.  相似文献   

16.
17.
Na(+)-dependent neutral amino acid transport into the bovine renal epithelial cell line NBL-1 is catalysed by a broad-specificity transporter originally termed System B(0). This transporter is shown to differ in specificity from the B(0) transporter cloned from JAR cells [J. Biol. Chem. 271 (1996) 18657] in that it interacts much more strongly with phenylalanine. Using probes designed to conserved transmembrane regions of the ASC/B(0) transporter family we have isolated a cDNA encoding the NBL-1 cell System B(0) transporter. When expressed in Xenopus oocytes the clone catalysed Na(+)-dependent alanine uptake which was inhibited by glutamine, leucine and phenylalanine. However, the clone did not catalyse Na(+)-dependent phenylalanine transport, again as in NBL-1 cells. The clone encoded a protein of 539 amino acids; the predicted transmembrane domains were almost identical in sequence to those of the other members of the B(0)/ASC transporter family. Comparison of the sequences of NBL-1 and JAR cell transporters showed some differences near the N-terminus, C-terminus and in the loop between helices 3 and 4. The NBL-1 B(0) transporter is not the same as the renal brush border membrane transporter since it does not transport phenylalanine. Differences in specificity in this protein family arise from relatively small differences in amino acid sequence.  相似文献   

18.
Dopamine (DA) uptake through the neuronal plasma membrane DA transporter (DAT) is essential for the maintenance of normal DA homeostasis in the brain. The DAT‐mediated re‐uptake system limits not only the intensity but also the duration of DA actions at presynaptic and postsynaptic receptors. This protein is the primary target for cocaine and amphetamine, both highly addictive and major substances of abuse worldwide. DAT is also the molecular target for therapeutic agents used in the treatment of mental disorders, such as attention deficit hyperactivity disorder and depression. Given the role played by the DAT in regulation of DA neurotransmission and its contribution to the abuse potential of psychostimulants, it becomes not only important but also necessary to understand the functional regulation of this protein. To investigate the cellular and molecular mechanisms associated with DAT function and regulation, our laboratory and others have embarked on a systematic search for DAT protein–protein interactions. Recently, a growing number of proteins have been shown to interact with DAT. These novel interactions might be important in the assembly, targeting, trafficking and/or regulation of transporter function. In this review, I summarize the main findings obtained from the characterization of DAT‐interacting proteins and discuss the functional implications of these novel interactions. Based on these new data, I propose to use the term DAT proteome to explain how interacting proteins regulate DAT function. These novel interactions might help define new mechanisms associated with the function of the transporter.  相似文献   

19.
The dopamine transporter (DAT) removes dopamine from the extracellular milieu and is potently inhibited by number of psychoactive drugs, including cocaine, amphetamines, and methylphenidate (Ritalin). Multiple lines of evidence demonstrate that protein kinase C (PKC) down-regulates dopamine transport, primarily by redistributing DAT from the plasma membrane to endosomal compartments, although the mechanisms facilitating transporter sequestration are not defined. Here, we demonstrate that DAT constitutively internalizes and recycles in rat pheochromocytoma (PC12) cells. Temperature blockades demonstrated basal internalization and reliance on recycling to maintain DAT cell surface levels. In contrast, recycling blockade with bafilomycin A1 significantly decreased transferrin receptor (TfR) surface expression but had no effect on DAT surface levels, suggesting that DAT and TfR traffic via distinct endosomal mechanisms. Kinetic analyses reveal robust constitutive DAT cycling to and from the plasma membrane, independent of transporter expression levels. In contrast, phorbol ester-mediated PKC activation accelerated DAT endocytosis and attenuated transporter recycling in a manner sensitive to DAT expression levels. These data demonstrate constitutive DAT trafficking and that PKC-mediated DAT sequestration is achieved by a combination of accelerated internalization and reduced recycling. Additionally, the differential sensitivity to expression level exhibited by constitutive and regulated DAT trafficking suggests that these two processes are mediated by independent cellular mechanisms.  相似文献   

20.
Na+-dependent neutral amino acid transport into the bovine renal epithelial cell line NBL-1 is catalysed by a broad-specificity transporter originally termed System B0. This transporter is shown to differ in specificity from the B0 transporter cloned from JAR cells [J. Biol. Chem. 271 (1996) 18657] in that it interacts much more strongly with phenylalanine. Using probes designed to conserved transmembrane regions of the ASC/B0 transporter family we have isolated a cDNA encoding the NBL-1 cell System B0 transporter. When expressed in Xenopus oocytes the clone catalysed Na+-dependent alanine uptake which was inhibited by glutamine, leucine and phenylalanine. However, the clone did not catalyse Na+-dependent phenylalanine transport, again as in NBL-1 cells. The clone encoded a protein of 539 amino acids; the predicted transmembrane domains were almost identical in sequence to those of the other members of the B0/ASC transporter family. Comparison of the sequences of NBL-1 and JAR cell transporters showed some differences near the N-terminus, C-terminus and in the loop between helices 3 and 4. The NBL-1 B0 transporter is not the same as the renal brush border membrane transporter since it does not transport phenylalanine. Differences in specificity in this protein family arise from relatively small differences in amino acid sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号