首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Inosine monophosphate (IMP) dehydrogenase had previously been determined to be a likely target enzyme for the sesquiterpene lactones, a class of potential anti-neoplastic drugs. IMP dehydrogenase was purified approx. 770-fold from the P-388 lymphocytic leukemia tumor cell line. The Km values for the substrates, IMP and NAD, were determined to be 12 microM and 25 microM, respectively. Xanthine monophosphate (XMP) was shown to be a competitive inhibitor with a Ki of 67 microM. Mycophenolic acid gave mixed-type inhibition with a Ki of 8 nM for the noncompetitive component and a Ki of 2 nM for the competitive component. Dissociation constants (Kd) and rate constants for inhibition of IMP dehydrogenase by nine different sesquiterpene lactones were determined. The highest Kd was seen with 2,3-dihydrohelenalin while the lowest Kd was observed with bis-helenalinyl malonate. Binding of the drugs by IMP dehydrogenase increased as the size of the drug increased. Also, changes in structure at position 6 had a relatively large effect on the Kd. There was no correlation with hydrophobicity, as determined by octanol/water partition. The first-order rate constants for the reaction of the sesquiterpene lactones with IMP dehydrogenase (k1) and the second-order rate constants for the reaction of the sesquiterpene lactones with glutathione (k2) were also determined. The rate constants for most of the sesquiterpene lactones with the alpha-methylene-gamma-lactone moiety were similar and were approximately twice as great as the rate constants for those sesquiterpene lactones with only the alpha, beta-unsaturated cyclopentenone ring. Microlenin had approximately 5-times the reactivity of the other sesquiterpene lactones towards IMP dehydrogenase, but had approximately the same reactivity towards glutathione, suggesting that it was bound to the enzyme in a way which facilitated its reaction with one or more essential sulfhydryls. The same procedure was used for a series of N-substituted maleimide compounds with the N-substituent ranging in size from a methyl group to a benzyl group. The binding of the maleimide compounds was generally tighter than for the sesquiterpene lactones and there was an increase in binding with size.  相似文献   

2.
Mycophenolic acid (MA) was demonstrated to be an effective inhibitor of the growth of the intracellular parasitic protozoan Eimeria tenella in tissue culture and guanine was shown to reverse this inhibition as expected for an inhibitor of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205). A high performance liquid chromatography study of the intracellular nucleotide pools labeled with [3H]hypoxanthine was carried out in host cells lacking hypoxanthine-guanine phosphoribosyltransferase, and the depletion of guanine nucleotides demonstrated that the intracellular parasite enzyme was being inhibited by the drug. Kinetic studies carried out on the enzyme derived from E. tenella oocysts demonstrated substrate inhibition by NAD and mycophenolic acid inhibition similar to that found for mammalian enzymes, but different from that for bacterial enzymes. The inhibition by mycophenolic acid was not time-dependent and was immediately reversed upon dilution. As found previously for other IMP dehydrogenases, an Ordered Bi-Bi mechanism prevails with IMP on first followed by NAD, NADH off first, and then XMP. The kinetic patterns are consistent with substrate inhibition at high concentrations of NAD due to the formation of an E X XMP X NAD complex. Uncompetitive inhibition by MA versus IMP, NAD, and K+ was found and this was interpreted as evidence for the formation of an E X XMP X MA complex. A speculative mechanism for the inhibition of the enzyme is offered which is consistent with the fact that E X XMP X MA readily forms, whereas E X IMP X MA does not.  相似文献   

3.
Tiazofurin was demonstrated to be an effective inhibitor of the growth of human cultured blast cells, and the high specific activities of IMP dehydrogenase (EC 1.1.1.205) were observed in all the cell extracts tested. IMP dehydrogenase has been purified to homogeneity from MOLT 4F human T-lymphoblast, and the Km values for IMP and NAD were 29 and 54 microM, respectively. The inhibitory mechanisms of thiazole-4-carboxamide adenine dinucleotide (TAD) and ribavirin 5'-monophosphate (RMP), the active forms of the antimetabolites tiazofurin and ribavirin, were investigated on the purified enzyme. RMP inhibits competitively with respect to IMP as well as XMP, and the inhibition by TAD was similar to that by NADH, which was uncompetitive with NAD. However, the Ki values of RMP (0.58 microM) and TAD (0.075 microM) were several orders of magnitude lower than those of XMP (85 microM) and NADH (94 microM). Thus, the drugs interact with the two distinct sites of IMP dehydrogenase with much higher affinities than the natural substrates and products. Preincubation of the purified enzyme with RMP enhanced its inhibitory effect in a time-dependent manner, and the enhancement was further increased by the addition of TAD. The combination of tiazofurin and ribavirin exerted a synergistic effect on the growth inhibition in MOLT 4F cells.  相似文献   

4.
The preceding paper showed that IMP dehydrogenase [IMP:NAD+ oxidoreductase, EC 1.2.1.14] tended to form a precipitable complex(es) through ionic and hydrophobic interactions. On the basis of these observations, a method was developed for purification of IMP dehydrogenase from Yoshida sarcoma ascites cells. On SDS-polyacrylamide gel electrophoresis, the purified preparation (1.19 U/mg protein) appeared homogeneous and its minimum molecular weight was estimated to be 68K daltons. Amino acid analyses indicated a subunit molecular weight of 68,042. Molecular sieve chromatography in the presence of 10% (NH4)2SO4 showed that the molecular weight of the native enzyme was 127K daltons. These values indicate that the native enzyme is composed of two identical subunits. However, the purified enzyme gave 4 protein bands on polyacrylamide gel electrophoresis under non-denaturing conditions, and appeared as a single fraction in the vicinity of the void volume on Ultrogel AcA 34 column chromatography at low salt concentration, indicating that its molecular weight exceeded 200K daltons. These findings indicate that the enzyme tends to aggregate owing to its own physicochemical characteristics. The Km values for IMP and NAD were calculated to be 12 and 25 microM, respectively, and the Ki values for XMP, GMP, and AMP to be 109, 130, and 854 microM, respectively. The purified enzyme showed full activity in the presence of K+, and K+ could be partially replaced by Na+. PCMB inactivated the enzyme, but the activity was completely restored by the addition of DTT. Cl-IMP also inactivated the enzyme and IMP prevented this inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Initial velocities of the histidinol dehydrogenase reaction (EC 1.1.1.23) were measured as a function of the concentrations of the substrates histidinol and NAD+ and in the presence and absence of the product NADH. The data are consistent with a Bi Uni Uni Bi Ping Pong mechanism. The kinetic constants of this mechanism were determined; Km for histidinol was found to be 14 microM and for NAD+ 0.7 mV; Ki for NAD+ was 0.4 mM.  相似文献   

6.
L Hedstrom  C C Wang 《Biochemistry》1990,29(4):849-854
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) with the conversion of NAD to NADH. An ordered sequential mechanism where IMP is the first substrate bound and XMP is the last product released was proposed for Tritrichomonas foetus IMPDH on the basis of product inhibition studies. Thiazole adenine dinucleotide (TAD) is an uncompetitive inhibitor versus IMP and a noncompetitive inhibitor versus NAD, which suggests that TAD binds to both E-IMP and E-XMP. Mycophenolic acid is also an uncompetitive inhibitor versus IMP and noncompetitive versus NAD. Multiple-inhibitor experiments show that TAD and mycophenolic acid are mutually exclusive with each other and with NADH. Therefore, mycophenolic acid most probably binds to the dinucleotide site of T. foetus IMPDH. The mycophenolic acid binding site was further localized to the nicotinamide subsite within the dinucleotide site: mycophenolic acid was mutually exclusive with tiazofurin, but could form ternary enzyme complexes with ADP or adenosine diphosphate ribose. NAD inhibits the IMPDH reaction at concentrations greater than 3 mM. NAD substrate inhibition is uncompetitive versus IMP, which suggests that NAD inhibits by binding to E-XMP. TAD is mutually exclusive with both NAD and NADH in multiple-inhibitor experiments, which suggests that there is one dinucleotide binding site. The ordered mechanism predicts that multiple-inhibitor experiments with XMP and TAD, mycophenolic acid, or NAD should have an interaction constant (alpha) between 0 and 1. However, alpha was greater than 1 in all cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Y Yamada  Y Natsumeda  G Weber 《Biochemistry》1988,27(6):2193-2196
The inhibitory mechanisms of ribavirin 5'-monophosphate (RMP) and thiazole-4-carboxamide adenine dinucleotide (TAD), the active forms of the antimetabolites ribavirin and tiazofurin, were investigated in IMP dehydrogenase purified to homogeneity from rat hepatoma 3924A. The hepatoma IMP dehydrogenase has a tetrameric structure with a subunit molecular weight of 60,000. For the substrates IMP and NAD+, Km's were 23 and 65 microM, respectively. Product-inhibition patterns showed an ordered Bi-Bi mechanism for the enzyme reaction where IMP binds to the enzyme first, followed by NAD+; NADH dissociates from the ternary complex first and then XMP is released. XMP interacts with the free enzyme and competes for the ligand site with IMP, while NADH binds to the enzyme-XMP complex. RMP exerted the same inhibitory mechanisms as XMP, and the inhibition by TAD was similar to that by NADH. However, the Ki values for RMP (0.8 microM) and TAD (0.13 microM) were orders of magnitude lower than those of XMP (136 microM) and NADH (210 microM). Thus, the drugs interact with IMP dehydrogenase with higher affinities than the natural substrates and products, RMP with the IMP-XMP site and TAD with the NADH site. Preincubation of the purified enzyme with RMP enhanced its inhibitory effect in a time-dependent manner. The enzyme was protected from this inactivation by IMP or XMP. These results provide a biochemical basis for combination chemotherapy with tiazofurin and ribavirin targeted against the two different ligand sites of IMP dehydrogenase.  相似文献   

8.
We propose that the ratio of [14C]formate-labelled purine nucleosides and bases (both intra and extracellular) to nucleic acid purines provides, in exponentially growing cultures, a sensitive index for comparative studies of purine metabolism. This ratio was 4-fold greater for an HGPRT- mutant than for the parental HGPRT+ human lymphoblast line. The major components of the labelled nucleoside and base fraction were hypoxanthine and inosine. By blocking adenosine deaminase activity with coformycin we found that approx. 90% of inosine was formed directly from IMP rather than the route IMP leads to AMP leads to adenosine leads to inosine. The ratio of labelled base + nucleosides to nucleic acids was essentially unchagned for an AK- lymphoblast line and 2-fold greater than control for an HGPRT(-)-KAK- line, demonstrating that a deficiency of adenosine kinase alone has little effect on the accumulation of purine nucleosides and bases. Although adenosine was a minor component of the nucleoside and base fraction, the adenosine fraction increased from 3 to 13% with the addition of coformycin to the HGPRT(-)-AK- line. In the parental and HGPRT- lines, adenosine was shown to be primarily phosphorylated rather than deaminated at concentrations less than 5 microM. Inhibition of IMP dehydrogenase activity by mycophenolic acid caused a 12- and 3-fold increase in the rate of production of labelled base and nucleoside in the parent and HGPRT- cells respectively. These results suggest that a mutationally induced partial deficiency in the activities converting IMP to guanine nucleotides may result in an increased catabolism of IMP.  相似文献   

9.
IMP dehydrogenase (EC 1.2.1.14) was purified 180-fold from rat liver and from the transplantable rat hepatoma 3924A. The enzymes from the two sources were apparently identical; they exhibited hyperbolic saturation kinetics and an ordered, sequential mechanism, and were subject to inhibition by a number of purine nucleotides. Km values for the substrates, IMP and NAD+, were 12 and 24 micrometer respectively. IMP dehydrogenase activity in a spectrum of rat hepatomas was increased, relative to normal liver, by 2.5--13-fold; these increases correlated with tumour growth rate. Activity in two rat kidney tumours was increased 3-fold relative to that in normal renal cortex; control of activity of this enzyme is apparently altered in neoplastic cells. After partial hepatectomy, IMP dehydrogenase activity began to rise 6 h after operation, reaching a peak of 580% of normal activity by 18 h. Activity in neonatal liver, however, was only slightly higher than that in the adult. Organ-distribution studies showed highest enzyme activities in spleen and thymus. In livers of rats starved for 3 days, where all enzymes, except those involved in gluconeogenesis, showed decreased activity IMP dehydrogenase activity was increased; this change was accompanied by a rise in hepatic GTP concentrations. It is concluded that IMP dehydrogenase is a key enzyme in the regulation of GTP production, and thus involved in regulation of nucleic acid biosynthesis. The increased activity of IMP dehydrogenase in liver of starved rats may be related to the requirements for GTP for gluconeogenesis.  相似文献   

10.
The Michaelis constant values for the highly purified pyruvate dehydrogenase complex (PDC) from human heart are 25, 13 and 50 microM for pyruvate, CoA and NAD, respectively. Acetyl-CoA produces a competitive inhibition of PDC (Ki = 35 microM) with respect to CoA, whereas NADH produces the same type of inhibition with respect to NAD (Ki = 36 microM). The oxoglutarate dehydrogenase complex (OGDC) from human heart has active sites with two different affinities for 2-oxoglutarate ([S]0.5 of 30 and 120 microM). ADP (1 mM) decreases the [S]0.5 values by a half. The inhibition of OGDC (Ki = 81 microM) by succinyl-CoA is of a competitive type with respect to CoA (Km = 2.5 microM), whereas that of NADH (Ki = 25 microM) is of a mixed type with respect to NAD (Km = 170 microM).  相似文献   

11.
The inosinate dehydrogenase (IMPD) inhibitors ribavirin, tiazofurin and mycophenolic acid were found to stimulate by as much as 20-fold the anabolism of the anti-HIV agent 2' ,3'dideoxyguanosine to its 5'-diphosphate (ddGDP) in a human T-cell culture system (Molt-4 cells). Stimulation of the further conversion to ddGTP (the active form of the drug) was lesser in magnitude but still highly significant (up to 4-fold at appropriate concentrations of ribavirin or tiazofurin). In parallel with these increases, the inhibitors also produced increases of up to 35-fold in IMP levels. These results support the proposal that the initial phosphorylation of ddGuo is catalyzed by a phosphotransferase (5'-nucleotidase) which utilizes IMP as its phosphate donor (Johnson and Fridland, [1989] Molec. Pharmacol. 36, 291-295). Concomitant with this increase in 5'-phosphorylation of ddGuo, an increase in its anti-HIV activity of up to 6.5-fold was observed when this agent was combined with ribavirin (5 microM) in the H9 [corrected] cell assay system.  相似文献   

12.
13.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

14.
K B Busch  H Fromm 《Plant physiology》1999,121(2):589-597
Succinic semialdehyde dehydrogenase (SSADH) is one of three enzymes constituting the gamma-aminobutyric acid shunt. We have cloned the cDNA for SSADH from Arabidopsis, which we designated SSADH1. SSADH1 cDNA encodes a protein of 528 amino acids (56 kD) with high similarity to SSADH from Escherichia coli and human (>59% identity). A sequence similar to a mitochondrial protease cleavage site is present 33 amino acids from the N terminus, indicating that the mature mitochondrial protein may contain 495 amino acids (53 kD). The native recombinant enzyme and the plant mitochondrial protein have a tetrameric molecular mass of 197 kD. Fractionation of plant mitochondria revealed its localization in the matrix. The purified recombinant enzyme showed maximal activity at pH 9.0 to 9.5, was specific for succinic semialdehyde (K(0.5) = 15 microM), and exclusively used NAD+ as a cofactor (Km = 130 +/- 77 microM). NADH was a competitive inhibitor with respect to NAD+ (Ki = 122 +/- 86 microM). AMP, ADP, and ATP inhibited the activity of SSADH (Ki = 2.5-8 mM). The mechanism of inhibition was competitive for AMP, noncompetitive for ATP, and mixed competitive for ADP with respect to NAD+. Plant SSADH may be responsive to mitochondrial energy charge and reducing potential in controlling metabolism of gamma-aminobutyric acid.  相似文献   

15.
1. AMP is an activator of the pyruvate dehydrogenase complex of the Ehrlich--Lettré ascites tumour, increasing its V up to 2-fold, with Ka of 40 microM at pH 7.4. This activation appears to be an allosteric effect on the decarboxylase subunit of the complex. 2. The pyruvate dehydrogenase complex has a Km for pyruvate within the range 17--36 microM depending on the pH, the optimum pH being approx. 7.4, with a V of approx. 0.1 unit/g of cells. The rate-limiting step is dependent on the transformation of the enzyme--substrate complex. The Km for CoA is 15 microM. The Km for NAD+ is 0.7 mM for both the complex and the lipoamide dehydrogenase. The complex is inhibited by acetyl-CoA competitively with CoA; the Ki is 60 microM. The lipoamide dehydrogenase is inhibited by NADH and NADPH competitively with NAD+, with Ki values of 80 and 90 microM respectively. In the reverse reaction the Km values for NADH and NADPH are essentially equal to their Ki values for the forward reaction, the V for the latter being 0.09 of that of the former. Hence the reaction rate of the complex in vivo is likely to be markedly affected by feedback isosteric inhibition by reduced nicotinamide nucleotides and possibly acetyl-CoA.  相似文献   

16.
Gan L  Petsko GA  Hedstrom L 《Biochemistry》2002,41(44):13309-13317
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the conversion of IMP to XMP with the reduction of NAD(+), which is the rate-limiting step in the biosynthesis of guanine nucleotides. IMPDH is a promising target for chemotherapy. Microbial IMPDHs differ from mammalian enzymes in their lower affinity for inhibitors such as mycophenolic acid (MPA) and thiazole-4-carboxamide adenine dinucleotide (TAD). Part of this resistance is determined by the coupling between nicotinamide and adenosine subsites in the NAD(+) binding site that is postulated to involve an active site flap. To understand the structural basis of the drug selectivity, we solved the X-ray crystal structure of the catalytic core domain of Tritrichomonas foetus IMPDH in complex with IMP and beta-methylene-TAD at 2.2 A resolution. Unlike previous structures of this enzyme, the active site loop is ordered in this complex, and the catalytic Cys319 is 3.6 A from IMP, in the same plane as the hypoxanthine ring. The active site loop forms hydrogen bonds to the carboxamide of beta-Me-TAD which suggests that NAD(+) promotes the nucleophillic attack of Cys319 on IMP. The interactions of the adenosine end of TAD are very different from those in the human enzyme, suggesting the NAD(+) site may be an exploitable target for the design of antimicrobial drugs. In addition, a new K(+) site is observed at the subunit interface. This site is adjacent to beta-Me-TAD, consistent with the link between the K(+) activation and NAD(+). However, contrary to the coupling model, the flap does not cover the adenosine subsite and remains largely disordered.  相似文献   

17.
To study the induction of differentiation in human melanoma cells, we treated 12 melanoma cell lines with mycophenolic acid and tiazofurin, inhibitors of IMP dehydrogenase (IMPDH). In all cell lines studied, both agents inhibited cell growth and increased melanin content. However, the degree of growth inhibition did not necessarily correspond to the increase in melanin content. A detailed analysis of the HO and SK-MEL-131 cell lines indicated that mycophenolic acid and tiazofurin caused a time- and dose-dependent increase in the expression of a series of other maturation markers, including formation of dendrite-like structures, tyrosinase activity, and reactivity with the CF21 monoclonal antibody. The growth inhibition and melanogenesis induced by the IMPDH inhibitors was abrogated by the addition of exogenous guanosine. No such effect was observed after treatment of the cells with phorbol 12-myristate 13-acetate or retinoic acid, two other inducers of differentiation in these cells. The mycophenolic acid- and tiazofurin-treated cells also showed an increased level of IMPDH mRNA and protein, perhaps because of compensation for the inhibitor-mediated decrease in IMPDH activity. In contrast, treatment with phorbol 12-myristate 13-acetate or retinoic acid resulted in decreased levels of IMPDH mRNA and protein. The lack of a consistent pattern of IMPDH expression in the cells treated with IMPDH inhibitors and phorbol 12-myristate 13-acetate or retinoic acid suggests that the altered expression of IMPDH is not a general requirement for the induction of cell differentiation in these cells. Our results also suggest that IMPDH inhibitors may provide a useful approach to circumvent the differentiation block in melanoma.  相似文献   

18.
The protozoan parasite Cryptosporidium parvum causes severe enteritis with substantial morbidity and mortality among AIDS patients and young children. No fully effective treatment is available. C. parvum relies on inosine 5'-monophosphate dehydrogenase (IMPDH) to produce guanine nucleotides and is highly susceptible to IMPDH inhibition. Furthermore, C. parvum obtained its IMPDH gene by lateral transfer from an epsilon-proteobacterium, suggesting that the parasite enzyme might have very different characteristics than the human counterpart. Here we describe the expression of recombinant C. parvum IMPDH in an Escherichia coli strain lacking the bacterial homolog. Expression of the parasite gene restores growth of this mutant on minimal medium, confirming that the protein has IMPDH activity. The recombinant protein was purified to homogeneity and used to probe the enzyme's mechanism, structure, and inhibition profile in a series of kinetic experiments. The mechanism of the C. parvum enzyme involves the random addition of substrates and ordered release of products with rate-limiting hydrolysis of a covalent enzyme intermediate. The pronounced resistance of C. parvum IMPDH to mycophenolic acid inhibition is in strong agreement with its bacterial origin. The values of Km for NAD and Ki for mycophenolic acid as well as the synergistic interaction between tiazofurin and ADP differ significantly from those of the human enzymes. These data suggest that the structure and dynamic properties of the NAD binding site of C. parvum IMPDH can be exploited to develop parasite-specific inhibitors.  相似文献   

19.
The NAD+-dependent isocitrate dehydrogenase of the organic acid-producing yeast Yarrowia lipolytica was isolated, purified, and partially characterized. The purification procedure included four steps: ammonium sulfate precipitation, acid precipitation, hydrophobic chromatography, and gel-filtration chromatography. The enzyme was purified 129-fold with a yield of 31% and had a specific activity of 22 U/mg protein. The molecular mass of the enzyme was found to be 412 kDa. The enzyme consists of eight identical subunits with a molecular mass of about 52 kDa. The Km for NAD+ is 136 microM, and that for isocitrate is 581 microM. The effect of some intermediates of the citric acid cycle and nucleotides on the enzyme activity was studied. The role of isocitrate dehydrogenase (NAD+) in the overproduction of citric and keto acids is discussed.  相似文献   

20.
T Oda  S Ushiyama  K Matsuda  Y Iijima 《Life sciences》1988,43(20):1647-1652
15-Hydroxyprostaglandin dehydrogenase was partially purified from hog gastric mucosa by about 1000-fold with a 13.5% yield. Its molecular weight was estimated to be 32,000 daltons by gel filtration. The enzyme was inhibited by some metabolites of plaunotol [(2E, 6Z, 10E)-7-hydroxymethyl-3,11,15-trimethyl-2,6,10,14-hexadecatetrae n-1- ol], a new anti-ulcer drug. The inhibition patterns for substrates, prostaglandin E1 and NAD+ were both uncompetitive with Ki values of 7.8 and 19.7 microM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号