首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH(4)-N and As were found to be significantly related (P<0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.  相似文献   

2.
The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR–denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH4-N and As were found to be significantly related ( P <0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.  相似文献   

3.
Celussi M  Cataletto B 《Gene》2007,406(1-2):113-123
Bacterioplankton community diversity was investigated monthly in coastal waters of the Gulf of Trieste (NE Adriatic Sea) throughout 2003. Superficial bacterial assemblages of two differently freshwater influenced stations were studied using PCR-DGGE fingerprinting techniques. Bacterial genetic diversity of the sampled area, as estimates of the number of DGGE bands was high (36-64) compared to that reported in other studies employing this fingerprint technique. The similarity index (Sorensen Index) between assemblages showed a defined operational taxonomic units (OTUs) succession pattern in the more typically marine station with stable winter communities and quickly changing summer ones. On the contrary in the station affected by riverine inputs no clear pattern was detected. In both sites, according to cluster analyses performed on the DGGE banding pattern, three seasonal assemblages were identified: winter-spring, summer and fall. Sequence analysis of fifty-six among the brightest gel bands led to the observation of bacteria affiliated to Gram positive, Cyanobacteria, Cytophaga-Flavobacteria-Bacteroides (CFB) lineages and the alpha-, gamma- and delta- subdivisions of the Proteobacteria. Gamma-Proteobacteria constituted the main fraction (60%) of sequences in the more typically marine station, whereas the river-influenced station was characterised by more heterogeneous assemblages (39% alpha-Proteobacteria, 32% Flavobacteria).  相似文献   

4.
Plankton communities in eight lakes of different trophic status near Yangtze, China were charac‐terized by using denatured gradient gel electrophoresis (DGGE). Various water quality parameters were also measured at each collection site. Following extraction of DNA from plankton communi‐ties, 16S rRNA and 18S rRNA genes were amplified with specific primers for prokaryotes and eu‐karyotes, respectively; DNA profiles were developed by DGGE. The plankton community of each lake had its own distinct DNA profile. The total number of bands identified at 34 sampling stations ranged from 37 to 111. Both prokaryotes and eukaryotes displayed complex fingerprints composed of a large number of bands: 16 to 59 bands were obtained with the prokaryotic primer set; 21 to 52 bands for the eukaryotic primer set. The DGGE‐patterns were analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Temperature, pH, alkalinity, and the con‐centration of COD, TP and TN were strongly correlated with the DGGE patterns. The parameters that demonstrated a strong correlation to the DGGE fingerprints of the plankton community differed among lakes, suggesting that differences in the DGGE fingerprints were due mainly to lake trophic status. Results of the present study suggest that PCR‐DGGE fingerprinting is an effective and precise method of identifying changes to plankton community composition, and therefore could be a useful ecological tool for monitoring the response of aquatic ecosystems to environmental perturbations. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Bacterioplankton community structures under contrasting subtropical marine environments (Hong Kong waters) were analyzed using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of predominant bands for samples collected bimonthly from 2004 to 2006 at five stations. Generally, bacterial abundance was significantly higher in the summer than in the winter. The general seasonal variations of the bacterial community structure, as indicated by cluster analysis of the DGGE pattern, were best correlated with temperature at most stations, except for the station close to a sewage discharge outfall, which was best explained by pollution-indicating parameters (e.g. biochemical oxygen demand). Anthropogenic pollutions appear to have affected the presence and the intensity of DGGE bands at the stations receiving discharge of primarily treated sewage. The relative abundance of major bacterial species, calculated by the relative intensity of DGGE bands after PCR amplification, also indicated the effects of hydrological or seasonal variations and sewage discharges. For the first time, a systematic molecular fingerprinting analysis of the bacterioplankton community composition was carried out along the environmental and pollution gradient in a subtropical marine environment, and it suggests that hydrological conditions and anthropogenic pollutions altered the total bacterial community as well as the dominant bacterial groups.  相似文献   

6.
对武汉东湖5个不同湖区的浮游生物群落DNA进行了RAPD指纹分析,并探讨了DNA指纹结构与环境理化因子的关系.结果表明:所筛选的9条随机引物共扩增210条大小为150~2000bp的谱带,多态率为93.3%.各站点平均有42条谱带,其中Ⅳ站最多(53条),Ⅴ站最少(35条).Ⅰ站的PO4^3--P、TP含量最高,Ⅴ站的NH4^+-N、TN、NO2^--N含量最高,Ⅳ站各理化因子含量均低于其他站点,站点间COD、碱度、硬度、钙含量差异不大.相似性聚类分析表明,基于RAPD标记的浮游生物群落指纹将5个站点划分为两类:Ⅰ、Ⅱ、Ⅲ站聚为一枝,Ⅳ、Ⅴ站聚为另一枝.这与湖区主要理化因子的聚类结果一致.说明东湖不同湖区浮游生物群落DNA指纹与其环境理化因子密切相关.  相似文献   

7.
Spatial distribution, diversity and composition of eukaryotic ultraplankton community of the northern South China Sea (nSCS) surface water and the relationship with the in situ water environment were investigated by the method of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). A total of 18 DGGE intensive bands were detected and the sequence analysis of these DGGE bands revealed that Alveolata was the dominant eukaryotic ultraplankton group of surface water in the nSCS (50%). Other species belonged to Bicoecea, Bolidophyceae, Polycystinea and Chlorophyta, which accounted for less proportion of eukaryotic ultraplankton in the study area. Unweighted pair group method with arithmetic averages clustering of the sampling stations indicated that all stations were classified mainly based on geographical proximity. Redundancy analysis (RDA) was employed to further investigate the relationships between DGGE band pattern and the environmental variables. Based on the RDA analysis, temperature, salinity, phosphorus and silicate were the important factors to shape the eukaryotic ultraplankton community composition in the nSCS.  相似文献   

8.
9.
基于PCR-DGGE技术的红树林区微生物群落结构   总被引:4,自引:0,他引:4  
【目的】为了解红树林沉积物中细菌的群落结构特征。【方法】应用PCR-DGGE技术对福建浮宫红树林的16个采样站位样品细菌的群落结构进行了研究。根据DGGE指纹图谱,对它们的遗传多样性进行了分析。【结果】各站位样品细菌多样性指数(H)、丰度(S)和均匀度(EH)均有所不同,这些差异与它们所处站位的不同有关,红树林区细菌多样性高于非红树林区细菌多样性。对不同站位细菌群落相似性分析,它们的相似性系数也存在一定的规律,同一断面的细菌群落结构相近性较高。对DGGE的优势条带序列分析,同源性最高的微生物分别属于变形菌门(Proteobacteria)、酸菌门(Acidobacteria)和绿菌门(Chlorobi),它们均为未培养微生物,分别来自于河口海岸沉积物。【结论】应用PCR-DGGE技术更能客观地反映红树林沉积物中真实的细菌群落结构信息。另外,研究也表明红树林区微生物多样性丰富,在红树林区研究开发未知微生物资源具有巨大的潜力。  相似文献   

10.
Microeukaryotic plankton are important components of aquatic environments and play key roles in marine microbial food webs; however, little is known about their genetic diversity in subtropical offshore areas. Here we examined the community composition and genetic diversity of the microeukaryotic plankton in Xiamen offshore water by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis), clone-based sequencing and Illumina based sequencing. The Illumina MiSeq sequencing revealed a much (approximately two orders of magnitude) higher species richness of the microeukaryotic community than DGGE, but there were no significant difference in species richness and diversity among the northern, eastern, southern or western stations based on both methods. In this study, Copepoda, Ciliophora, Chlorophyta, Dinophyceae, Cryptophyta and Bacillariophyta (diatoms) were the dominant groups even though diatoms were not detected by DGGE. Our Illumina based results indicated that two northern communities (sites N2 and N3) were significantly different from others in having more protozoa and fewer diatoms. Redundancy analysis (RDA) showed that both temperature and salinity were the significant environmental factors influencing dominant species communities, whereas the full microeukaryotic community appeared to be affected by a complex of environmental factors. Our results suggested that extensive sampling combined with more deep sequencing are needed to obtain the complete diversity of the microeukaryotic community, and different diversity patterns for both abundant and rare taxa may be important in evaluating the marine ecosystem health.  相似文献   

11.
The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the 16S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.  相似文献   

12.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

13.
基于PCR-DGGE基因指纹的对虾体内优势细菌组成分析   总被引:16,自引:0,他引:16  
采用不依赖分离培养的16S rDNA的PCR-DGGE基因指纹技术对刀额新对虾与中国对虾的鳃部与肠道优势细菌种群组成进行比较分析。研究发现:对虾鳃部与肠道存在着丰富多样的细菌;根据DGGE指纹图的聚类分析发现不同对虾及同一种对虾的鳃部与肠道内的细菌组成差异性非常大;同时也发现不同对虾体内有相同的细菌存在。首次尝试建立基于16S rDNA的PCR-DGGE基因指纹的对虾体内细菌组成揭示方法,对于今后建立对虾与养殖水体微生物和相关疾病的关系具有重要意义。  相似文献   

14.
Bacterial community dynamics were followed in a 19-day period during an induced diatom bloom in two freshwater mesocosms. The main goal was to compare diversity and succession among free-living (<10 MM) AND PARTICLE-ASSOCIATED (>10 mm) bacteria. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rDNA showed the highest number of bands among free-living bacteria, but with a significant phylogenetic overlap in the two size fractions indicating that free-living bacteria were also important members of the particle-associated bacterial assemblage. Whereas the number of bands in the free-living fraction decreased during the course of the bloom, several phylotypes unique to particles appeared towards the end of the experiment. Besides the primer set targeting Bacteria, a primer set targeting most members of the Cytophaga-Flavobacterium (CF)-cluster of the Cytophaga-Flavobacterium-Bacteroides group and a primer set mainly targeting a-Proteobacteria were applied. PCR-DGGE analyses revealed that a number of phylotypes targeted by those primer sets were found solely on particles. Almost all sequenced bands from the bacterial DGGE gel were related to phylogenetic groups commonly found in freshwater: a-Proteobacteria, CF, and Firmicutes. Despite the use of primers intended to be specific mainly for a-Proteobacteria most bands sequenced from the a-proteobacterial DGGE gel formed a cluster within the Verrucomicrobiales subdivision of the Verrucomicrobia division and were not related to a-Proteobacteria. Bands sequenced from the CF DGGE gel were related to members of the CF cluster. From the present study, we suggest that free-living and particle-associated bacterial communities should not be perceived as separate entities, but rather as interacting assemblages, where the extent of phylogenetic overlap is dependent on the nature of the particulate matter.  相似文献   

15.
A polyphasic PCR-DGGE approach was used to describe the microbial population occurring in natural whey cultures (NWCs) for water-buffalo Mozzarella cheese production. Total microbial community was assessed without cultivation by analyzing DNA directly extracted from the original samples of NWC. In addition, DNA extracted from bulks of cells formed by harvesting colonies from the serial dilution agar plates of a variety of culture media was used to profile the "cultivable" community. The 16S rDNA V3 region was amplified using DNA from NWC as well as DNA from bulks as templates and the amplicons were separated by DGGE. The microbial entities occurring in NWCs were identified by partial 16S rDNA sequencing of DGGE bands: four lactic acid bacteria (LAB) closest relative of Streptococcus thermophilus, Lactococcus lactis, Lactobacillus delbrueckii and Lactobacillus crispatus were revealed by the analysis of DNA directly extracted from NWC while two other LAB, Lactobacillus fermentum and Enterococcus faecalis, were identified by analyzing DNA from the cultivable community. The developed PCR-DGGE analysis of the "cultivable" community showed good potential in evaluating microbial diversity of a dairy environment: it usefully highlighted the bias introduced by selective amplification when compared to the analysis of the total community from NWC and allowed suitability of media and growth conditions to be evaluated. Moreover, it could be used to complete the culture independent study of microbial diversity to give information on concentration ratios among species occurring in a particular environment and can be proposed for rapid identification of dominant microorganisms in alternative to traditional tools.  相似文献   

16.
We investigated the microbial genetic diversity and ciliate community in coastal soil from five sites with an environmental gradient using denaturing gradient gel electrophoresis (DGGE), gene sequencing and the Ludox–QPS method. The analyses of both the 16S ribosomal RNA (rRNA) gene and 18S rRNA gene DGGE resulted in equal or even a higher number of bands found in the samples taken from the high-salinity sites IV and V than in those taken from the low-to-moderate-salinity sites I–III. Cluster analysis of both DGGE profiles classified the five sites into three main groups (sites I, II and III and IV and V), which corresponded well to the analysis of environmental factors. There were 13 species observed at site I, three species at site II and nine species at site III, while no active ciliates were observed at the high-salinity sites IV and V. By contrast, the ciliate-specific DGGE revealed a higher number of bands in the samples taken from the high-salinity soil. Furthermore, gene sequencing suggested that the ciliates in the high-salinity soil comprised forms originating not only from soil but also from marine environments. The data indicate that saline soil may maintain a high diversity of ciliates and soil salinity might be the most influential factor regulating the community structure of ciliates.  相似文献   

17.
A direct molecular method for assessing the diversity of specific populations of rhizobia in soil, based on nested PCR amplification of 16S-23S ribosomal RNA gene (rDNA) intergenic spacer (IGS) sequences, was developed. Initial generic amplification of bacterial rDNA IGS sequences from soil DNA was followed by specific amplification of (1) sequences affiliated with Rhizobium leguminosarum "sensu lato" and (2) R. tropici. Using analysis of the amplified sequences in clone libraries obtained on the basis of soil DNA, this two-sided method was shown to be very specific for rhizobial subpopulations in soil. It was then further validated as a direct fingerprinting tool of the target rhizobia based on denaturing gradient gel electrophoresis (DGGE). The PCR-DGGE approach was applied to soils from fields in Brazil cultivated with common bean (Phaseolus vulgaris) under conventional or no-tillage practices. The community fingerprints obtained allowed the direct analysis of the respective rhizobial community structures in soil samples from the two contrasting agricultural practices. Data obtained with both primer sets revealed clustering of the community structures of the target rhizobial types along treatment. Moreover, the DGGE profiles obtained with the R. tropici primer set indicated that the abundance and diversity of these organisms were favoured under NT practices. These results suggest that the R. leguminosarum-as well as R. tropici-targeted IGS-based nested PCR and DGGE are useful tools for monitoring the effect of agricultural practices on these and related rhizobial subpopulations in soils.  相似文献   

18.
Contemporary microbial community analysis frequently involves PCR-amplified sequences of the 16S rRNA gene (rDNA). However, this technology carries the inherent problem of heterogeneity between copies of the 16S rDNA in many species. As an alternative to 16S rDNA sequences in community analysis, we employed the gene for the RNA polymerase beta subunit (rpoB), which appears to exist in one copy only in bacteria. In the present study, the frequency of 16S rDNA heterogeneity in bacteria isolated from the marine environment was assessed using bacterial isolates from the red alga Delisea pulchra and from the surface of a marine rock. Ten strains commonly used in our laboratory were also assessed for the degree of heterogeneity between the copies of 16S rDNA and were used to illustrate the effect of this heterogeneity on microbial community pattern analysis. The rock isolates and the laboratory strains were also used to confirm nonheterogeneity of rpoB, as well as to investigate the versatility of the primers. In addition, a comparison between 16S rDNA and rpoB PCR-DGGE (denaturing gradient gel electrophoresis)-based community analyses was performed using a DNA mixture of nine isolates from D. pulchra. Eight out of 14 isolates from D. pulchra, all rock isolates, and 6 of 10 laboratory strains displayed multiple bands for 16S rDNA when analyzed by DGGE. There was no indication of heterogeneity for either the rock isolates or the laboratory strains when rpoB was used for PCR-DGGE analysis. Microbial community pattern analysis using 16S rDNA PCR-DGGE showed an overestimation of the number of laboratory strains in the sample, while some strains were not represented. Therefore, the 16S rDNA PCR-DGGE-based community analysis was proven to be severely limited by 16S rDNA heterogeneity. The mixture of isolates from D. pulchra proved to be more accurately described using rpoB, compared to the 16S rDNA-based PCR-DGGE.  相似文献   

19.
Vertical distribution of bacterial community structure was investigated in the sediments of two eutrophic lakes of China, Lake Taihu and Lake Xuanwu. Profiles of bacterial communities were generated using a molecular fingerprinting technique, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequence analysis, and the results were interpreted with multivariate statistical analysis. To assess changes in the genetic diversity of bacterial communities with changing depth, DGGE banding patterns were analysed by cluster analysis. Distinct clusters were recognized in different sampling stations of Lake Taihu. Canonical correspondence analysis (CCA) was carried out to infer the relationship between environmental variables and bacterial community structure. DGGE samples collected at the same sampling site clustered together in both lakes. Total phosphorus, organic matter and pH were considered to be the key factors driving the changes in bacterial community composition.  相似文献   

20.
太湖浮游细菌与春末浮游藻类群落结构演替的相关分析
  总被引:7,自引:0,他引:7  
邢鹏  孔繁翔  曹焕生  张民 《生态学报》2007,27(5):1696-1702
为研究浮游细菌与浮游藻类群落演替的相关性,2005年4月至6月在太湖5个观测点采集浮游细菌及浮游藻类样本。分别采用聚合酶链式反应-变性梯度凝胶电泳(PCR—DGGE)和显微观察的方法分析浮游细菌及浮游藻类群落组成。结果表明,春末夏初,浮游细菌与藻类均呈现较高的多样性,浮游细菌DGGE图谱具有43种不同条带,浮游藻类的常见种有29种。浮游细菌群落聚类分析显示,丝藻(Ulothrix sp.)和微囊藻(Microcystis spp.)占优势时,浮游细菌群落基因组成存在明显差异。以藻类种群Shannon—Wiener多样性指数(Hp),浮游藻类总细胞数(N)以及Microcystis spp.(M)百分含量为变量,典型对应分析(CCA)结果显示浮游细菌与浮游藻类群落结构变化的相关系数为30.9%,表明春末夏初太湖浮游细菌与浮游藻类群落演替具有较高的相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号