首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new Zea mays viviparous seed mutant, viviparous15 (vp15), was isolated from the UniformMu transposon-tagging population. In addition to precocious germination, vp15 has an early seedling lethal phenotype. Biochemical analysis showed reduced activities of several enzymes that require molybdenum cofactor (MoCo) in vp15 mutant seedlings. Because MoCo is required for abscisic acid (ABA) biosynthesis, the viviparous phenotype is probably caused by ABA deficiency. We cloned the vp15 mutant using a novel high-throughput strategy for analysis of high-copy Mu lines: We used MuTAIL PCR to extract genomic sequences flanking the Mu transposons in the vp15 line. The Mu insertions specific to the vp15 line were identified by in silico subtraction using a database of MuTAIL sequences from 90 UniformMu lines. Annotation of the vp15-specific sequences revealed a Mu insertion in a gene homologous to human MOCS2A, the small subunit of molybdopterin (MPT) synthase. Molecular analysis of two allelic mutations confirmed that Vp15 encodes a plant MPT synthase small subunit (ZmCNX7). Our results, and a related paper reporting the cloning of maize viviparous10, demonstrate robust cloning strategies based on MuTAIL-PCR. The Vp15/CNX7, together with other CNX genes, is expressed in both embryo and endosperm during seed maturation. Expression of Vp15 appears to be regulated independently of MoCo biosynthesis. Comparisons of Vp15 loci in genomes of three cereals and Arabidopsis thaliana identified a conserved sequence element in the 5' untranslated region as well as a micro-synteny among the cereals.  相似文献   

2.
3.
4.
RescueMu, a Mu1 element containing a bacterial plasmid, is mobilized by MuDR in transgenic maize. Somatic excision from a cell-autonomous marker gene yields >90% single cell sectors; empty donor sites often have deletions and insertions, including up to 210 bp of RescueMu/Mu1 terminal DNA. Late somatic insertions are contemporaneous with excisions, suggesting that "cut-and-paste" transposition occurs in the soma. During reproduction, RescueMu transposes infrequently from the initial transgene array, but once transposed, RescueMu is suitable for high throughput gene mutation and cloning. As with MuDR/Mu elements, heritable RescueMu insertions are not associated with excisions. Both somatic and germinal RescueMu insertions occur preferentially into genes and gene-like sequences, but they exhibit weak target site preferences. New insights into Mu behaviors are discussed with reference to two models proposed to explain the alternative outcomes of somatic and germinal events: a switch from somatic cut-and-paste to germinal replicative transposition or to host-mediated gap repair from sister chromatids.  相似文献   

5.
Genome‐wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro‐Tom genome were identified by a whole‐genome shotgun sequencing analysis to estimate the spectrum and distribution of whole‐genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired‐end reads for four EMS‐induced mutants and three gamma‐ray‐irradiated lines as well as a wild‐type line were obtained by next‐generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma‐ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1 140 687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild‐type Micro‐Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild‐type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse‐genetic approaches.  相似文献   

6.
7.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation (Ds) transposon lines with insertions on all 5 Arabidopsis chromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsis genome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsis lines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

8.
9.
Insertional mutagenesis techniques, including transposon- and T-DNA-mediated mutagenesis, are key resources for systematic identification of gene function in the model plant species Arabidopsis thaliana. We have developed a database (http://atidb.cshl.org/) for archiving, searching and analyzing insertional mutagenesis lines. Flanking sequences from approximately 10 500 insertion lines (including transposon and T-DNA insertions) from several tagging programs in Arabidopsis were mapped to the genome sequence through our annotation system before being entered into the database. The database front end provides World Wide Web searching and analyzing interfaces for genome researchers and other biologists. Users can search the database to identify insertions in a particular gene or perform genome-wide analysis to study the distribution and preference of insertions. Tools integrated with the database include a graphical genome browser, a protein search function, a graphical representation of the insertion distribution and a Blast search function. The database is based on open source components and is available under an open source license.  相似文献   

10.
Yu W  Lamb JC  Han F  Birchler JA 《Genetics》2007,175(1):31-39
Global genomic analysis of transposable element distributions of both natural (En/Spm, Ac-Ds, and MuDR/Mu) and modified (RescueMu) types was performed by fluorescence in situ hybridization (FISH) on somatic chromosomes coupled with karyotyping of each chromosome. In lines without an active transposable element, the locations of silent En/Spm, Ac-Ds, and MuDR/Mu elements were visualized, revealing variation in copy number and position among lines but no apparent locational bias. The ability to detect single elements was validated by using previously mapped active Ac elements. Somatic transpositions were documented in plants containing an engineered Mutator element, RescueMu, via use of the karyotyping system. By analyzing the RescueMu lines, we found that transposition of RescueMu in root-tip cells follows the cut-and-paste type of transposition. This work demonstrates the utility of FISH and karyotyping in the study of transposon activity and its consequences.  相似文献   

11.
A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs.  相似文献   

12.
13.
The expression of genomic instability was studied at the phenotypical (morphological characters, electrophoretic spectra of seed storage proteins) and molecular (DNA amplification products) levels in interspecific hybrids (ISHs) from crosses of inbred lines of cultivated sunflower Helianthus annuus with perennial species of the genus Helianthus and in introgressive lines (ILs) produced on their basis. Unstable state of the locus determining the trait of lower branching was proved by the method of hybridological analysis. It was shown with the use of RAPD markers that the IL genome is characterized by instability even after long-term inbreeding (in generations F8-F12). In progenies of different combinations of interspecific crosses, identical polymorphic variants were revealed for a seed storage protein, helianthinin, and for DNA fragments homologous to structural genes of functionally important proteins, suggesting the nonrandom character of ISH genome variation. This variation may be determined by genome reorganizations under the action of a genome shock induced by interspecific hybridization. The factors inducing reorganizations in the genome include the activity of mobile genetic elements (MGEs). Using primers specific to different MGE families, nucleotide sequences with a high level of homology to the sequences of fragments of the mobile elements MuDR, Far1, CACTA, Stowaway, and Tourist were identified in the sunflower genome. The possibility of using MGE fragments for sunflower genotyping was demonstrated.  相似文献   

14.
We have generated Dissociation (Ds) element insertions throughout the Arabidopsis genome as a means of random mutagenesis. Here, we present the molecular analysis of genomic sequences that flank the Ds insertions of 931 independent transposant lines. Flanking sequences from 511 lines proved to be identical or homologous to DNA or protein sequences in public databases, and disruptions within known or putative genes were indicated for 354 lines. Because a significant portion (45%) of the insertions occurred within sequences defined by GenBank BAC and P1 clones, we were able to assess the distribution of Ds insertions throughout the genome. We discovered a significant preference for Ds transposition to the regions adjacent to nucleolus organizer regions on chromosomes 2 and 4. Otherwise, the mapped insertions appeared to be evenly dispersed throughout the genome. For any given gene, insertions preferentially occurred at the 5' end, although disruption was clearly possible at any intragenic position. The insertion sites of >500 lines that could be characterized by reference to public databases are presented in a tabular format at http://www.plantcell. org/cgi/content/full/11/12/2263/DC1. This database should be of value to researchers using reverse genetics approaches to determine gene function.  相似文献   

15.
Protein structure-function relationships can be studied by using linker insertion mutagenesis, which efficiently identifies essential regions in target proteins. Bacteriophage Mu in vitro DNA transposition was used to generate an extensive library of pentapeptide insertion mutants within the alpha-complementing domain 1 of Escherichia coli beta-galactosidase, yielding mutants at 100% efficiency. Each mutant contained an accurate 15-bp insertion that translated to five additional amino acids within the protein, and the insertions were distributed essentially randomly along the target sequence. Individual mutants (alpha-donors) were analyzed for their ability to restore (by alpha-complementation) beta-galactosidase activity of the M15 deletion mutant (alpha-acceptor), and the data were correlated to the structure of the beta-galactosidase tetramer. Most of the insertions were well tolerated, including many of those disrupting secondary structural elements even within the protein's interior. Nevertheless, certain sites were sensitive to mutations, indicating both known and previously unknown regions of functional importance. Inhibitory insertions within the N-terminus and loop regions most likely influenced protein tetramerization via direct local effects on protein-protein interactions. Within the domain 1 core, the insertions probably caused either lateral shifting of the polypeptide chain toward the protein's exterior or produced more pronounced structural distortions. Six percent of the mutant proteins exhibited temperature sensitivity, in general suggesting the method's usefulness for generation of conditional phenotypes. The method should be applicable to any cloned protein-encoding gene.  相似文献   

16.
17.
Morozova TV  Pasiukova EG 《Genetika》2000,36(4):451-458
Three sublines of an inbred laboratory line of Drosophila melanogaster with the initial copia transposition rate 2 x 10(-2), 2 x 10(-3), and 5 x 10(-4) per copy per generation were reared for several dozen generations under conditions of low effective population size (by full-sib crosses or in a small mass culture of 10 females x 10 males). All six lines were tested for the transposition rate, location pattern, and copy number of copia in euchromatic genome regions and for fitness inferred from the intraspecific competition index. The copia transposition rate remained constant in both versions of the lines with an initially lower rate and decreased by an order of magnitude in both versions of the line with an initially higher rate. New copia insertions behaved as selectively neutral and were accumulated in the genome. Each new copy decreased fitness by less than 1% on average. Some of the existing unfixed insertions remained segregating after long-term inbreeding and were assumed to provide a selective advantage to heterozygotes.  相似文献   

18.
Insertional mutagenesis of cloned genes coupled with site specific recombination into the genome of the parent organism is an ideal method for characterizing gene function. In this paper we describe the production and utility of two antibiotic resistance cassettes for use in Haemophilus influenzae. The mutagenic elements encode resistance to chloramphenicol or spectinomycin. Multiple paired restriction enzyme sites bound both cassettes. Use of these constructs to create mutants in H. influenzae demonstrated that the cassettes are readily incorporated into the genome in single copy and allow easy detection of mutant constructs. The insertions are stable following repeated in vitro passage. In addition, the elements are compatible with each other and allow the construction of multiple mutations within a single strain.  相似文献   

19.
A modified Enhancer-Inhibitor transposon system was used to generate a series of mutant lines by single-seed descent such that multiple I insertions occurred per plant. The distribution of original insertions in the population was assessed by isolating transposon-flanking DNA, and a database of insertion sites was created. Approximately three-quarters of the identified insertion sites show similarity to sequences stored in public databases, which demonstrates the power of this regimen of insertional mutagenesis. To isolate insertions in specific genes, we developed three-dimensional pooling and polymerase chain reaction strategies that we then validated by identifying mutants for the regulator genes APETALA1 and SHOOT MERISTEMLESS. The system then was used to identify inserts in a class of uncharacterized genes involved in lipid biosynthesis; one such insertion conferred a fiddlehead mutant phenotype.  相似文献   

20.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号