首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mild alkaline hydrolysis of the glycophosphosphingolipids of the protozoanLeptomonas samueli liberated several phosphoinositol-containing oligosaccharides (PI-oligosaccharides), which were purified by high performance anion exchange chromatography. The oligosaccharides in the resulting four fractions were characterized by methylation analysis, fast atom bombardment mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. The oligosaccharides contain the core structure Man(1–4)GlcN(1–6)-myo-inositol-1-OPO3, and are substituted with 2mol of 2-aminoethylphosphonate per mol of oligosaccharide. The nonreducing ends of the oligosaccharides were terminated by rhamnose branched neutral and acidic xylose-containing penta-, hexa-, hepta- and octasaccharides, of which the three most abundant were shown to have the structures:
  相似文献   

2.
The pathway and ab initio direct kinetics of the decomposition 5-aminotetrazole (5-ATZ) to HN3 and NH2CN was investigated. Reactant, products and transition state were optimized with MP2 and B3LYP methods using 6–311G** and aug-cc-pVDZ basis sets. The intrinsic reaction coordinate curve of the reaction was calculated using the MP2 method with 6–311G** basis set. The energies were refined using CCSD(T)/6–311G**. Rate constants were evaluated by conventional transition-state theory (CVT) and canonical variational transition-state theory (TST), with tunneling effect over 300 to 2,500 K. The results indicated that the tunneling effect and the variational effect are small for the calculated rate constants. The fitted three-parameter expression calculated using the CVT and TST methods are and , respectively. Figure The mechanism of the decomposition process of 5-ATZ to HN3 and NH2CN  相似文献   

3.
4.
5.
Spirochaeta aurantia is a free-living saprophytic spirochete that grows easily in simple laboratory media, and thus can be used as a model for the investigation of surface carbohydrate structures in spirochetae, which are normally not available in sufficient amounts. Freeze-substitution electron microscopy indicated the presence of a capsule-like material projecting from the surface of S. aurantia. Extraction of cells gave two major glycolipids, the one with a higher molecular mass glycolipid was designated large glycolipid A (LGLA). LGLA contained small amount of branched and unsaturated O-linked fatty acids, l-rhamnose, l-fucose, d-xylose, d-mannose, d-glucosamine, d-glycero-d-gluco-heptose (DDglcHep), d-glycero-d-manno-heptose (DDHep), and a novel branched tetradeoxydecose monosaccharide, which we proposed to call aurantose (Aur). The carbohydrate structure of LGLA was extremely complex and consisted of the repeating units built of 11 monosaccharides, arrangement of nine of them was determined as:
$\matrix {{\quad \quad \quad \quad \quad {\text{ - [ - 3 - }}\beta {\text{ - DDglcHep - }}3{\text{ - }}\beta {\text{ - D - GlcNAc - 2 - }}\beta {\text{ - D - Man - ] - }}}} \\ {{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad |}} \\ {{\alpha {\text{ - Aur - 3 - }}\beta {\text{ - L - Rha - 4 - }}\beta {\text{ - D - Xyl - 4 - }}\alpha {\text{ - L - Fuc - 3 - }}\beta {\text{ - DDHep - 4}}}} \\ {{\quad \quad \quad \quad \quad \quad \quad \quad \quad |}} \\ {{\alpha {\text{ - L - Rha - 3}}}} \ $
which wasdeduced from the NMR and chemical data on the LGLA and its fragments, obtained by various degradations. Tentative position of two remaining sugars is proposed. LGLA was negative for gelation of Limulus amebocyte lysate, did not contain lipid A, and was unable to activate any known Toll-like receptors.
  相似文献   

6.
In this paper, we focus on the multiple-channel reactions of CH2XO (X = F, Cl, Br) radicals with the NO radical by means of direct dynamic methods. All structures of the stationary points were obtained at the MP2/6-311+G(d,p) level and vibrational frequency analysis was also performed at this level of theory. The minimum energy path (MEP) was obtained via the intrinsic reaction coordinate (IRC) theory at the MP2/6-311+G(d,p) level, and higher-level energetic information was refined by the MC-QCISD method. The rate constants for the three hydrogen abstraction reaction channels over the temperature range 200–1,500 K were calculated by the improved canonical variational transition state theory (ICVT) with a correction for small-curvature tunneling (SCT). The rate constants calculated in this manner were in good agreement with the available experimental data, and the three-parameter rate–temperature formulae for the temperature range 200–1,500 K were $ {k_{1{\text{a}} }}(T)=0.32\times {10^{-18 }}{T^{1.83 }}\exp \left( {1748.54/T} \right) $ , $ {k_{2{\text{a}} }}(T)=0.22\times {10^{-19 }}{T^{2.19 }}\exp \left( {1770.19/T} \right) $ , $ {k_{3{\text{a}} }}(T)=0.88\times {10^{-20 }}{T^{2.20 }}\exp \left( {1513.82/T} \right) $ (in units of cm3 molecule?1?s?1).  相似文献   

7.
In earlier work we have described how computer algebra may be used to derive composite rate laws for complete systems of equations, using the mathematical technique of Gröbner Bases (Bennett, Davenport and Sauro, 1988). Such composite rate laws may then be fitted to experimental data to yield estimates of kinetic parameters. Recently we have been investigating the practical application of this methodology to the estimation of kinetic parameters for the closed two enzyme system of aspartate aminotransferase (AAT) and malate dehydrogenase (MDH) (Fisher 1990a; Fisher 1990b; Bennett and Fisher, 1990): $$\begin{gathered} aspartate + \alpha - ketoglutarate\begin{array}{*{20}c} \rightharpoonup \\ \leftharpoondown \\ \end{array} glutamate + oxaloacetate \hfill \\ {\text{oxaloacetate + NADH}}\begin{array}{*{20}c} \rightharpoonup \\ \leftharpoondown \\ \end{array} malate + NAD^ + \hfill \\ \end{gathered} $$ In this paper we present a fuller (although not yet complete) analysis of the system. We show how symbolic estimates of the error behaviour of the parameters can be made, and used to identify those which are of kinetic significance. Finally we consider how metabolic control analysis can be applied directly to such a system.  相似文献   

8.
We investigated the interaction (hyper)polarizability of neon–dihydrogen pairs by performing high-level ab initio calculations with atom/molecule-specific, purpose-oriented Gaussian basis sets. We obtained interaction-induced electric properties at the SCF, MP2, and CCSD levels of theory. At the CCSD level, for the T-shaped configuration, around the respective potential minimum of 6.437 a0, the interaction-induced mean first hyperpolarizability varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-0.91\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.50{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2\hbox{--} 0.13{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.01{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Again, at the CCSD level, but for the L-shaped configuration around the respective potential minimum of 6.572 a0, this property varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-1.33\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.75{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2-0.20{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.02{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Graphical Abstract Interaction-induced mean dipole polarizability (\( \overline{a} \)) for the T-shaped configuration of H2–Ne calculated at the SCF, MP2, and CCSD levels of theory
  相似文献   

9.
Correlation analyses were carried out to determine relation of body temperature and respiration rate of three breeds of swine to the environmental temperature. Coefficients of regression were determined for a prediction equation of the form:
$$\begin{array}{*{20}c} {y = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 } \\ {where,y = body temperature} \\ {\begin{array}{*{20}c} {x_1 = respiration rate} \\ {x_2 = body weight} \\ {\begin{array}{*{20}c} {x_3 = sex} \\ {x_4 = environmental temperature} \\ {x_5 = x_1 x_4 } \\ \end{array} } \\ \end{array} } \\ \end{array}$$  相似文献   

10.
Measurement of amount of nitrogen fixed by a legume crop   总被引:9,自引:2,他引:9  
Summary The amount of nitrogen fixed by a legume crop can be calculated from the relationship % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGbb% GaaeyBaiaab+gacaqG1bGaaeOBaiaabshacaqGGaGaae4BaiaabAga% caqGGaGaaeOzaiaabMgacaqG4bGaaeyzaiaabsgacaqGGaGaaeOtai% aabccacaqG9aaabaGaaeypaiaabccadaqadaqaaiaaigdacqGHsisl% daWcaaqaaiGacggacaGG0bGaai4Baiaac2gacaGGGaGaaiyjaiaacc% cacaGGobGaaiylaiaacgdacaGG1aGaaiiiaiaacwgacaGG4bGaai4y% aiaacwgacaGGZbGaai4CaiaacccacaGGPbGaaiOBaiaacccacaGGSb% GaaiyzaiaacEgacaGG1bGaaiyBaiaacwgacaGGGaGaai4yaiaackha% caGGVbGaaiiCaaqaaiGacggacaGG0bGaai4Baiaac2gacaGGGaGaai% yjaiaacccacaGGobGaaiylaiaacgdacaGG1aGaaiiiaiaacwgacaGG% 4bGaai4yaiaacwgacaGGZbGaai4CaiaacccacaGGPbGaaiOBaiaacc% cacaqGYbGaaeyzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaae4y% aiaabwgacaGGGaGaai4yaiaackhacaGGVbGaaiiCaaaaaiaawIcaca% GLPaaacaqI4bGaaKiiaiaabshacaqGVbGaaeiDaiaabggacaqGSbGa% aeiiaiaab6eacaqGGaGaaeyAaiaab6gacaqGGaGaaeiBaiaabwgaca% qGNbGaaeyDaiaab2gacaqGLbGaaeiiaiaabogacaqGYbGaae4Baiaa% bchaaaaa!9A78!\[\begin{gathered} {\text{Amount of fixed N = }} \hfill \\ {\text{ = }}\left( {1 - \frac{{\operatorname{atom} \% N - 15 excess in legume crop}}{{\operatorname{atom} \% N - 15 excess in {\text{reference}} crop}}} \right)\user1{x }{\text{total N in legume crop}} \hfill \\ \end{gathered} \]when a suitable reference crop is chosen. The implications and interpretation of this method of measurement are described.  相似文献   

11.
Summary The energy requirements of Adélie penguin (Pygoscelis adeliae) chicks were analysed with respect to body mass (W, 0.145–3.35 kg, n=36) and various forms of activity (lying, standing, minor activity, locomotion, walking on a treadmill). Direct respirometry was used to measure O2 consumption ( ) and CO2 production. Heart rate (HR, bpm) was recorded from the ECG obtained by both externally attached electrodes and implantable HR-transmitters. The parameters measured were not affected by hand-rearing of the chicks or by implanting transmitters. HR measured in the laboratory and in the field were comparable. Oxygen uptake ranged from in lying chicks to at maximal activity, RQ=0.76. Metabolic rate in small wild chicks (0.14–0.38 kg) was not affected by time of day, nor was their feeding frequency in the colony (Dec 20–21). Regressions of HR on were highly significant (p< 0.0001) in transmitter implanted chicks (n=4), and two relationships are proposed for the pooled data, one for minor activities ( ), and one for walking ( ). Oxygen consumption, mass of the chick (2–3 kg), and duration of walking (T, s) were related as , whereas mass-specific O2 consumption was related to walking speed (S, m·s-1) as .Abbreviations bpm beats per minute - D distance walked (m) - ECG electrocardiogram - HR heart rate (bpm) - ns number of steps - RQ respiratory quotient - S walking speed (m·s-1) - T time walked (s) - W body mass (kg)  相似文献   

12.
In a continuing effort to further explore the use of the average local ionization energy $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ as a computational tool, we have investigated how well $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ computed on molecular surfaces serves as a predictive tool for identifying the sites of the more reactive electrons in several nonplanar defect-containing model graphene systems, each containing one or more pentagons. They include corannulene (C20H10), two inverse Stone-Thrower-Wales defect-containing structures C26H12 and C42H16, and a nanotube cap model C22H6, whose end is formed by three fused pentagons. Coronene (C24H12) has been included as a reference planar defect-free graphene model. We have optimized the structures of these systems as well as several monohydrogenated derivatives at the B3PW91/6-31G* level, and have computed their $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ on molecular surfaces corresponding to the 0.001 au, 0.003 au and 0.005 au contours of the electronic density. We find that (1) the convex sides of the interior carbons of the nonplanar models are more reactive than the concave sides, and (2) the magnitudes of the lowest $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ surface minima (the $ {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} $ ) correlate well with the interaction energies for hydrogenation at these sites. These $ {{\overline{\mathrm{I}}}_{{\mathrm{S}\text{,}\min }}} $ values decrease in magnitude as the nonplanarity of the site increases, consistent with earlier studies. A practical benefit of the use of $ \overline{\mathrm{I}}\left( \mathbf{r} \right) $ is that a single calculation suffices to characterize the numerous sites on a large molecular system, such as graphene and defect-containing graphene models.
Figure
Convex 0.001 au molecular surface of hydrogenated inverse Stone-Thrower-Wales defect-containing model 4H, with the hydrogen attached to one of the central carbons fusing the two pentagons  相似文献   

13.
Starting from the basic flux equation, it is possible to obtain an integral form relating the current componentsI i at an arbitrary pointr 2 to the distribution of mobilities and concentrationsc i, potential forces\(\bar \mu \), and chemical productivityp i without any restrictive assumptions such as constant mobilities, constant field, steady state, or electrical neutrality. The equation is
$$\begin{gathered} I_i (r_2 ) = G_i (r_2 )\left[ {\Delta \bar \mu _i - \int_{r_1 }^{r_2 } {z_i } FA\left( {p_i - dc_i /dt} \right)\left( {\frac{1}{{G_i (r)}}} \right)dr} \right]; \hfill \\ G_i (r) = 1/\int_{r_1 }^r {\frac{{dr}}{{z_i^2 F^2 c_i u_i }}.} \hfill \\ \end{gathered} $$  相似文献   

14.
To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate $ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{rest}}}} } \right) $ , critical swimming speed (U crit) and active oxygen consumption rate $ \left( {{\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} } \right) $ of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the $ \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $ , U crit and $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between U crit and temperature (T) approximately followed a bell-shaped curve as temperature increased: U crit = 8.21/{1 + [(T ? 27.2)/17.0]2} (R 2 = 0.915, P < 0.001, N = 40). The optimal temperature for maximal U crit (8.21 BL s?1) in juvenile qingbo was 27.2 °C. Both the $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ and the metabolic scope (MS, $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} - \dot{M}{\text{O}}_{{ 2 {\text{rest}}}} $ ) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ or MS and temperature were described as $ {\dot{\text{M}}\text{O}}_{{ 2 {\text{active}}}} = 1,214.29/\left\{ {1 + \left[ {\left( {T - 28.8} \right)/10.6} \right]^{2} } \right\}\;\left( {R^{2} = 0.911,\;P < 0.001,\;N = 40} \right) $ and MS = 972.67/{1 + [(T ? 28.0)/9.34]2} (R 2 = 0.878, P < 0.001, N = 40). The optimal temperatures for $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both U crit and $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ at a low temperature (P < 0.05), but training exhibited no significant effect on either U crit or $ \dot{M}{\text{O}}_{{ 2 {\text{active}}}} $ at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.  相似文献   

15.
16.
Gill function in an elasmobranch   总被引:1,自引:0,他引:1  
Summary Highly efficient oxygen uptake in elasmobranchs, as indicated by frequent excess of over has previously been ascribed to the operation of multicapillary rather than counter-current gas exchange by the gills. Analysis of models shows that, at maximum efficiency, a multicapillary system cannot account for values of greater than . In Port Jackson sharks Heterodontus portusjacksoni) commonly exceeds , which indicates the operation of a functional counter-current at the respiratory surface. The anatomical basis of this counter-current is provided by the demonstration that a continuous flow of water passes between the secondary lamellae into septal canals and thence via the parabranchial cavities to the exterior.Queen Elizabeth II Fellow.  相似文献   

17.
A mechanistic understanding of perchlorate () entry into plants is important for establishing the human health risk associated with consumption of contaminated produce and for assessing the effectiveness of phytoremediation. To determine whether common soil anions affect uptake and accumulation in higher plants, a series of competition experiments using lettuce (Lactuca sativa L.) were conducted between (50 nM) and (4–12 mM), (1–10 mM), or Cl (5–15 mM) in hydroponic solution. The effects of (0–5 mM) and pH (5.5–7.5) on uptake were also examined. Increasing in solution significantly reduced the amount of taken up by green leaf, butter head, and crisphead lettuces. Sulfate and Cl had no significant effects on uptake in lettuce over the concentrations tested. Increasing pH significantly reduced the amount of taken up by crisphead and green leaf lettuces, whereas increasing significantly reduced uptake in butter head lettuce. The inhibition by across all lettuce genotypes suggests that may share an ion carrier with , and the decrease in uptake with increasing pH or provides macroscopic evidence for cotransport across the plasma membrane.  相似文献   

18.
The tetrameric heart isozyme of lactate dehydrogenase (H4) is modified by p-chloromercuribenzoate (PCMB) to produce the inactive tetramer and then hybridized with native tetrameric muscle isozyme (M4). The hybrid mixture was isolated by polyacrylamide gel electrophoresis (PAGE) and then stained for enzyme activity and with Coomassie brilliant blue. Only three bands were found on the gels in either case. The hybrid enzymes as isolated by PAGE have half the specific activity of the native muscle enzyme. The electrophoresis properties of HM3 are very similar to those of HM3, while the electrophoresis properties of are very similar to those of H2M2. The above results strongly suggest that the tetramer having enzymatic activity contains at least two native subunits, and the di-subunit in the tetrameric enzyme is the minimal functional unit.  相似文献   

19.
The data processing method of the turbidimetric bioassay of nisin was modified to facilitate its industrial application. The influence of the initial indicator concentration was minimized by a redefined specific dose of the bacteriocin as the quotient between the titer of the added bacteriocin and the initial population density of the indicator in the suspension. It was found that d c = 0.125 μg ml−1 was the critical dose of nisin that can cause a complete inhibition of the indicator, Pediococcus acidilactici UL5, with an initial OD of 0.135. To eliminate the interference of the cell debris, an equation, , exploiting d c, was formulated to obtain the intrinsic survival proportion. The use of the specific dose of the bacteriocin and the intrinsic survival proportion as parameters of the dose/response curve greatly enhanced its repeatability and feasibility. A dual-dosage approach was developed to further simplify the conventional standard dose/response curve method.  相似文献   

20.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号