首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The current view of the control of food intake involves a central feeding system in the hypothalamus receiving input from peripheral systems. The presence of food in the gut stimulates the release of several regulatory peptides that control gut motility and secretion. Some of these peptides also act as feedback satiety signals, responsible for termination of a meal. Among the regulatory peptides suggested as peripheral satiety signals are cholecystokinin and gastrin releasing peptide. A more long-term peripheral regulation of food intake has also been postulated and leptin has been suggested as a regulator of food intake. Several regulatory peptides mediate orexigenic or anorexigenic effects in the central feeding system. Neuropeptide Y and galanin both act centrally and stimulate the intake of food, while corticotropin releasing factor reduces food intake. At present, most information about the regulation of food intake is gained from mammalian studies and these findings are used as a base for a discussion on the current knowledge of how regulatory peptides control appetite in non-mammalian vertebrates.  相似文献   

4.
A Bado  C Rozé  M J Lewin  M Dubrasquet 《Peptides》1989,10(5):967-971
In this report, we investigated the role of exogenous and endogenous enkephalins on food intake in the cat, using, respectively, exogenous [D-Ala2-Met5]-enkephalin (DAME) and acetorphan (Ac) in order to inhibit the degradation of endogenous enkephalins. In addition, the selective peripheral antagonist naltrexone methylbromide (NTxMB) and the nonselective antagonist naloxone (Nx) were used in an attempt to discriminate central and peripheral opioid receptors. In 18-hours food-deprived animals, Ac (5 mg/kg IV) increased milk intake during sham feeding (+18%, p less than 0.05), but did not modify it in feeding conditions. Nx (1 mg/kg SC) reduced milk intake in sham-feeding experiments (-67%, p less than 0.01) more than in milk-feeding conditions (-30%, p less than 0.01). NTxMB (1 mg/kg SC) did not modify milk intake in sham-feeding but decreased it in feeding experiments. In nonfasted animals, Ac did not modify food intake. IV infusion of DAME (50 micrograms/kg) resulted in a reduction of daily food intake (-32%, p less than 0.01). Nx (1 mg/kg SC) decreased the earlier 30 min intake followed by reduction of daily intake (-30%, p less than 0.01). NTxMB (1 and 4 mg/kg SC) increased the 30-min intake dose dependently, without significant change in daily intake. In conclusion, Ac increases food intake in sham-feeding conditions, suggesting that endogenous enkephalins are likely to be involved in the stimulation of food intake. The effects of Nx and NTxMB furthermore suggest both a central activation, and a peripheral inhibition of food intake by opiates when food is allowed to proceed normally through the digestive tract.  相似文献   

5.
6.
Atrial natriuretic peptide inhibits water and sodium intake in rabbits   总被引:2,自引:0,他引:2  
The effect of atrial natriuretic peptide (ANP) on water and sodium intake was investigated in wild rabbits, a species which does not drink water following i.c.v. or i.v. administration of angiotensin II but develops sodium appetite following i.c.v. infusion of angiotensin II. ANP was given during or after depletion of extracellular fluid volume: hemorrhage, fluid deprivation and administration of furosemide. Systemically administered ANP reduced the water, but not the sodium intake of wild rabbits. I.c.v. administration of ANP inhibited both water and sodium intake. The suppression of thirst following both i.v. and i.c.v. administration of ANP indicates that inhibition of the effect of angiotensin II is not the exclusive mechanism and the circumventricular organs are probably not the exclusive sites of action for ANP. The inhibition of sodium appetite in wild rabbits was consistent with earlier proposals that ANP acts through the inhibition of the effects of angiotensin II. Reduction of food intake coincident with administration of ANP was also noted, but dose-dependent decrease was not observed.  相似文献   

7.
8.
Serotonin [5-hydroxytryptamine (5-HT)] and CCK injected into the lateral parabrachial nucleus (LPBN) inhibit NaCl and water intake. In this study, we investigated interactions between 5-HT and CCK into the LPBN to control water and NaCl intake. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were treated with furosemide + captopril to induce water and NaCl intake. Bilateral LPBN injections of high doses of the 5-HT antagonist methysergide (4 microg) or the CCK antagonist proglumide (50 microg), alone or combined, produced similar increases in water and 1.8% NaCl intake. Low doses of methysergide (0.5 microg) + proglumide (20 microg) produced greater increases in NaCl intake than when they were injected alone. The 5-HT(2a/2c) agonist 2,5-dimetoxy-4-iodoamphetamine hydrobromide (DOI; 5 microg) into the LPBN reduced water and NaCl intake. After proglumide (50 microg) + DOI treatment, the intake was not different from vehicle treatment. CCK-8 (1 microg) alone produced no effect. CCK-8 combined with methysergide (4 microg) reduced the effect of methysergide on NaCl intake. The data suggest that functional interactions between 5-HT and CCK in the LPBN may be important for exerting inhibitory control of NaCl intake.  相似文献   

9.
This study examined the effect of subcutaneous administration of the neurohormone oxytocin on water intake of ad lib-fed (with or without sodium availability in the diet) and food-deprived animals. Results of the first experiment showed that oxytocin increased water intake and urine excretion in food-deprived but not in ad lib-fed animals. However, oxytocin treatment did not modify the reduced water "balance" (fluid intake minus urine volume) resulting from food deprivation or the daily food intake (Experiment 1). The dose-dependent polydipsic effect of oxytocin on food-deprived rats was always preceded by an increase in sodium and fluid urine excretion (Experiment 2). Oxytocin also increased the water intake of animals fed ad lib with a low sodium diet (Experiment 3). These results suggest that the effect of oxytocin on water intake is dependent on the presence or absence of sodium in the diet and that the excretion of sodium is the main mechanism of oxytocinergic polydipsia in food-deprived male rats.  相似文献   

10.
Takayanagi Y  Onaka T 《The FEBS journal》2010,277(24):4998-5005
Subsequent to the isolation of the first recognized RFamide neuropeptide, FMRFamide, from the clam, a large number of these peptides have been identified. There are now five groups of RFamide peptides identified in mammals. RFamide peptides show diversity with respect to their N-terminal sequence and biological activity. RFamide peptides have been implicated in a variety of roles, including energy metabolism, stress and pain modulation, as well as effects in the neuroendocrine and cardiovascular systems. In the present minireview, we focus on prolactin-releasing peptide (PrRP) and RFamide related peptide (RFRP) with respect to their roles in the control of energy metabolism and stress responses. Both food intake and stressful stimuli activate PrRP neurons. The administration of PrRP affects energy metabolism and neuroendocrine systems. PrRP-deficient or PrRP receptor-deficient mice show abnormal energy metabolism and/or stress responses. On the other hand, RFRP neurons are activated by stressful stimuli and the administration of RFRP induces neuroendocrine and behavioral stress responses. Taken together, these data suggests that PrRP and RFRP neurons play a role in the control of energy metabolism and/or stress responses.  相似文献   

11.
12.
The effects of barbiturates on 24-h intakes of water and food and urinary excretion of sodium and potassium as well as on plasma concentration of sodium and potassium and osmolality were examined in dogs placed in metabolism cages and fed with a semiliquid diet. Administration of barbiturates stimulated drinking in a Series of 8 dogs having free access to water. Twenty four-h water intake and water balance increased significantly. Food intake, urinary output and urinary excretion of solutes, sodium and water did not change in this Series. A significant decrease in urine output as well as in osmolal clearance and urinary excretion of sodium was observed in a Series of 7 dogs having water restricted for 24 h following administration of barbiturates. Water balance increased in this Series. The same restriction of water in the dogs which had not received barbiturates did not modify renal excretion of water and electrolytes. Plasma osmolality, sodium and potassium concentrations did not change in either Series of experiments. It is concluded that barbiturates induce positive water balance either by stimulation of drinking when water is freely available or by reduction in urine output when water is restricted. The results suggest that expansion of the body fluids following the increased water intake may abolish reduction in urine output and sodium excretion which otherwise occur after administration of barbiturates.  相似文献   

13.
14.
As a target site for angiotensin II (A-II), renal proximal tubule is unique in that it may be equipped with a local A-II generating system and that both basolateral and apical membranes may be accessible for A-II's action. We have recently conducted studies to examine these possibilities. With in vitro cultured proximal tubular cells, we have demonstrated de novo synthesis of angiotensinogen and renin. With isolated renal brush border membrane (BBM), we have confirmed the presence of A-II receptors and found that A-II directly stimulated BBM Na(+)-H+ exchange. In search of the signal transduction mechanism, we have found that A-II also activated BBM phospholipase A2 (PLA) and that BBM contained a pertussis toxin-sensitive guanine nucleotide binding protein (G-protein) which mediates the effects of A-II. Further studies showed that prevention of PLA activation abolished A-II's effect on Na(+)-H+ exchange, and that activation of PLA by mellitin and addition of arachidonic acid similarly enhanced Na(+)-H+ exchange activity, suggesting that PLA activation may mediate the stimulatory effect of A-II on Na(+)-H+ exchange. These results thus indicate that a local signal transduction mechanism involving G-protein mediated PLA activation exists in renal BBM which mediates A-II's effect on Na(+)-H+ exchange. Taken together, we propose that, independent of A-II in the circulation, local luminal A-II may serve as an important regulatory system on sodium transport in renal proximal tubule.  相似文献   

15.
16.
Circadian water and sodium excretion in patients with renal arterial stenosis is inverted, but if the fluid intake is reduced it can return to normal. The findings also furnish indirect evidence that changes in circadian water and sodium excretion in patients with renal arterial stenosis are related to the degree of hydration of the organism. When evaluating circadian water and sodium excretion in patients with renal arterial stenosis, the osmolarity (specific gravity) of the urine should thus be taken into account.  相似文献   

17.
Janus kinase (JAK) 2 is activated by ANG II in vitro and in vivo, and chronic blockade of JAK2 by the JAK2 inhibitor AG-490 has been shown recently to attenuate ANG II hypertension in mice. In this study, AG-490 was infused intravenously in chronically instrumented rats to determine if the blunted hypertension was linked to attenuation of the renal actions of ANG II. In male Sprague-Dawley rats, after a control period, ANG II at 10 ng·kg(-1)·min(-1) was infused intravenously with or without AG-490 at 10 ng·kg(-1)·min(-1) iv for 11 days. ANG II infusion (18 h/day) increased mean arterial pressure from 91 ± 3 to 168 ± 7 mmHg by day 11. That response was attenuated significantly in the ANG II + AG-490 group, with mean arterial pressure increasing only from 92 ± 5 to 127 ± 3 mmHg. ANG II infusion markedly decreased urinary sodium excretion, caused a rapid and sustained decrease in glomerular filtration rate to ~60% of control, and increased renal JAK2 phosphorylation; all these responses were blocked by AG-490. However, chronic AG-490 treatment had no effect on the ability of a separate group of normal rats to maintain normal blood pressure when they were switched rapidly to a low-sodium diet, whereas blood pressure fell dramatically in losartan-treated rats on a low-sodium diet. These data suggest that activation of the JAK/STAT pathway is critical for the development of ANG II-induced hypertension by mediating its effects on renal sodium excretory capability, but the physiological control of blood pressure by ANG II with a low-salt diet does not require JAK2 activation.  相似文献   

18.
19.
20.
The hypothesis was tested that suppression of generation of ANG II is one of the mechanisms of the water immersion (WI)-induced natriuresis in humans. In one protocol, eight healthy young males were subjected to 3 h of 1) WI (WI + placebo), 2) WI combined with ANG II infusion of 0.5 ng. kg(-1). min(-1) (WI + ANG II-low), and 3) a seated time control (Con). In another almost identical protocol, 7-10 healthy young males were investigated to delineate the tubular site(s) of action of ANG II by the lithium clearance method (C(Li)) and were on an additional fourth study day subjected to infusion of ANG II at a rate of 1.5 ng. kg(-1). min(-1) (WI + ANG II-high). During WI + placebo, plasma concentration of ANG II decreased from 16 +/- 2 to 8 +/- 1 pg/ml (P < 0.05) and renal sodium excretion increased from 104 +/- 15 to 294 +/- 27 micromol/min (P < 0.05). During WI + ANG II-low, plasma ANG II was not suppressed by WI, and the natriuresis was blunted by 52 +/- 13% (P < 0.05). During WI + ANG II-low and WI + ANG II-high, an increase in C(Li) was prevented that was otherwise observed during WI, and fractional distal reabsorption of sodium was facilitated. In conclusion, maintaining plasma concentration of ANG II unchanged at the level of control attenuates the natriuresis of WI considerably in humans. Therefore, suppression of generation of ANG II is an important mechanism of the natriuresis of WI in humans. Furthermore, infusion of ANG II during WI prevents an otherwise induced increase in C(Li) and facilitates the fractional distal reabsorption of sodium, probably via an effect on aldosterone release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号