首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
The mathematical relationship between the kinetic data of joint motion and the functional electrical stimulation (FES) voltage of the corresponding antagonistic pair of muscles is given on the basis of a dynamic ankle joint model. The mathematical model is solved with the aid of state variables, while the resulting electrical stimulation voltage is found as a solution of the Volterra integral equation. The calculated stimulation voltage was applied to the plantar and dorsiflexors of the ankle joint of a hemiplegic patient. The measured ground reaction forces and goniograms during walking with and without electrical stimulation showed a significant improvement of the patient's gait. The problems of low saturation muscle force during FES, the need for individual determination of model parameters, nonlinearities of the system and the variability of gait are discussed.  相似文献   

2.
This paper presents a case study that tested the feasibility and efficacy of using injectable microstimulators (BIONs) in a functional electrical stimulation (FES) device to correct foot drop. Compared with surface stimulation of the common peroneal nerve, stimulation with BIONs provides more selective activation of specific muscles. For example, stimulation of the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles with BIONs produces ankle flexion without excessive inversion or eversion of the foot (i.e., balanced flexion). Efficacy was assessed using a 3-dimensional motion analysis of the ankle and foot trajectories during walking with and without stimulation. Without stimulation, the toe on the affected leg drags across the ground. BION stimulation of the TA muscle and deep peroneal nerve (which innervates TA and EDL) elevates the foot such that the toe clears the ground by 3 cm, which is equivalent to the toe clearance in the less affected leg. The physiological cost index (PCI) measured effort during walking. The PCI equals the change in heart rate (from rest to activity) divided by the walking speed; units are beats per metre. The PCI is high without stimulation (2.29 +/- 0.37, mean +/- SD) and greatly reduced with surface (1.29 +/- 0.10) and BIONic stimulation (1.46 +/- 0.24). Also, walking speed increased from 9.4 +/- 0.4 m/min without stimulation to 19.6 +/- 2.0 m/min with surface and 17.8 +/- 0.7 m/min with BIONic stimulation. These results suggest that FES delivered by a BION is an alternative to surface stimulation and provides selective control of muscle activation.  相似文献   

3.
The objective of this work was to develop a noninvasive method to measure the joint torques produced by biarticular muscles at two joints simultaneously. During intramuscular stimulation of the cat medial gastrocnemius (MG) muscle, torques at the ankle and knee joints were calculated from forces measured in two dimensions at the end point of the cat paw under isometric conditions. The method was verified by the known anatomical properties of cat MG muscle and the tibialis anterior (TA) muscle. The MG muscle was shown to produce a significant flexion torque at the knee, besides an extension torque at the ankle. This was in agreement with its anatomical arrangement. The TA muscle produced primarily an ankle flexion torque. The small knee torque, due to measurement errors, yielded an estimate of measurement accuracy of 3.0 +/- 2.1% (n = 52). The coupling ratio of the MG muscle, defined as T(ankle)/T(knee), varied significantly with both knee and ankle angles. The profile of MG mechanical coupling agreed qualitatively with changes in limb configuration. The method can be used to measure recruitment properties of electrically stimulated biarticular muscles, and may potentially be used to study the biomechanics of biarticular coupling.  相似文献   

4.
Upper extremity neuroprostheses use functional electrical stimulation (FES) to restore arm motor function to individuals with cervical level spinal cord injury. For the design and testing of these systems, a biomechanical model of the shoulder and elbow has been developed, to be used as a substitute for the human arm. It can be used to design and evaluate specific implementations of FES systems, as well as FES controllers. The model can be customized to simulate a variety of pathological conditions. For example, by adjusting the maximum force the muscles can produce, the model can be used to simulate an individual with tetraplegia and to explore the effects of FES of different muscle sets. The model comprises six bones, five joints, nine degrees of freedom, and 29 shoulder and arm muscles. It was developed using commercial, graphics-based modeling and simulation packages that are easily accessible to other researchers and can be readily interfaced to other analysis packages. It can be used for both forward-dynamic (inputs: muscle activation and external load; outputs: motions) and inverse-dynamic (inputs: motions and external load; outputs: muscle activation) simulations. Our model was verified by comparing the model calculated muscle activations to electromyographic signals recorded from shoulder and arm muscles of five subjects. As an example of its application to neuroprosthesis design, the model was used to demonstrate the importance of rotator cuff muscle stimulation when aiming to restore humeral elevation. It is concluded that this model is a useful tool in the development and implementation of upper extremity neuroprosthetic systems.  相似文献   

5.
The role of intersegmental dynamics during rapid limb oscillations   总被引:4,自引:0,他引:4  
The interactive dynamic effects of muscular, inertial and gravitational moments on rapid, multi-segmented limb oscillations were studied. Using three-segment, rigid-body equations of motion, hip, knee and ankle intersegmental dynamics were calculated for the steady-state cycles of the paw-shake response in adult spinal cats. Hindlimb trajectories were filmed to obtain segmental kinematics, and myopotentials of flexors and extensors at each of the three joints were recorded synchronously with the ciné film. The segmental oscillations that emerged during the paw-shake response were a consequence of an interplay between active and passive musculotendinous forces, inertial forces, and gravity. During steady-state oscillations, the amplitudes of joint excursions, peak angular velocities, and peak angular accelerations increased monotonically and significantly in magnitude from the proximal joint (hip) to the most distal joint (ankle). In contrast to these kinematic relationships, the maximal values of net moments at the hip and knee were equal in magnitude, but of significantly lower magnitude than the large net moment at the ankle joint. At both the ankle and the knee, the flexor and extensor muscle moments were equal, but at the hip the magnitude of the peak flexor muscle moment was significantly greater than the extensor muscle moment. Muscle moments at the hip not only acted to counterbalance accelerations of the more distal segments, but also acted to maintain the postural orientation of the hindlimb. Large muscle moments at the knee functioned to counterbalance the large inertial moments generated by the large angular accelerations of the paw. At the ankle, the muscle moments dominated the generation of the paw accelerations. At the ankle and the knee, muscle moments controlled limb dynamics by slowing and reversing joint motions, and the active muscle forces contributing to ankle and knee moments were derived from lengthening of active musculotendinous units. In contrast to the more distal joints, the active muscles crossing the hip predominantly shortened as a result of the interplay among inertial forces and gravitational moments. The muscle function and kinetic data explain key features of the complex interactions that occur between central control mechanisms and multi-segmented, oscillating limb segments during the paw-shake response.  相似文献   

6.
This study compares effects of chronic electrical stimulation on the expression levels of FGF-1, FGF-2 and their receptors (FGFRI, FGFR4) in rat tibialis anterior (TA) muscle of hypothyroid rat, as well as in satellite cell cultures derived from normal rat TA and soleus (SOL) muscles. In 5-day (5-d)-stimulated hypothyroid TA muscle, FGF-1 and FGF-2 mRNA levels were threefold elevated over control. FGFR1 and FGFR4 mRNAs were twofold and 1.5-fold elevated, respectively. In longer stimulated muscles, FGF-1 and FGFR4 mRNAs returned to basal levels, whereas FGF-2 mRNA remained elevated. FGFR1 mRNA decreased to control levels in 10-d stimulated muscles, but increased again after 20 days of stimulation. SOL- and TA-derived satellite cell cultures were stimulated for 5 days. At this time point, changes in myosin heavy chain isoforms were detectable consisting of increases in MHCI mRNA and decreases in MHCIIb and MHCIId mRNA. The comparison between 5-d-stimulated hypothyroid TA muscle and 5-d-stimulated TA- and SOL-derived satellite cell cultures revealed differences in the expression of FGF-1 and FGF-2, but similar expression levels of FGFR1 and FGFR4. Even though FGF-1 and FGF-2 mRNAs were elevated in the satellite cell cultures, their increases were less pronounced than in the stimulated hypothyroid muscle. Taking into consideration that skeletal muscle contains muscle fibres and various non-muscle tissues, e.g. blood vessels, these results suggest that the latter contribute to the observed increases in FGF-1 and FGF-2 expression in stimulated muscle.  相似文献   

7.
The mechanical properties of the whole muscle and fast-twitch muscle units of the cat hindlimb pretibial flexors have been explored and related to normal locomotion. Tibialis anterior (TA) is parallel-fibered and functionally crosses a single joint, the ankle, whereas extensor digitorum longus (EDL) is pinnate and spans the ankle, knee, metatarsophalangeal and interphalangeal joints. The active tetanic tension of TA remains near its peak value over a range of muscle lengths associated with normal ankle movement. In contrast, the length-tension curve of EDL is sharply peaked. However, normal corollary action of the knee, ankle and metatarsophalangeal joints during stepping minimizes EDL's excursion and maintains it at or near a length optimal for peak tension development. EDL is capable of producing synchronous but sterotyped digit and ankle movements while TA provides for independent ankle flexion at all relevant joint angles. The mechanical properties of 84 TA and 98 EDL fast-twitch muscle units were studied by measuring twitch contraction time (≤45 msec), peak tetanic tension, response to repetitive stimulation, and contractile fatigue resistance during electrical stimulation of single alpha axons, functionally isolated from ventral root filaments. These mechanical properties were essentially similar for both muscles with the exception of mean peak tetanic tension which was 30% lower for TA units (14 gm-wt) than for EDL units (20 gm-wt). A high proportion of units in both muscles demonstrated fatigue resistance which is reflective of the repetitive, phasic demand upon these muscles during locomotion.  相似文献   

8.
The intrinsic laryngeal muscles cricothyroid (CT) and thyroarythenoid (TA) differ in myosin expression. CT expresses limb myosin heavy chains (MyHCs) and TA expresses an MyHC found in extraocular (EO) muscles, in addition to limb isoforms. We used immunohistochemical (IHC) analyses with highly specific monoclonal antibodies (MAbs) against various MyHCs to study muscle fiber types in rat CT and TA and to investigate whether nerves to laryngeal muscles control MyHC expression. CT was found to have the full complement of limb fiber types. TA had three major fiber types: 2b/eo, co-expressing 2B and EO MyHCs, 2x/2b, co-expressing 2X and 2B MyHCs, and 2x, expressing 2X MyHC. Type 2a and slow fibers were absent. TA consisted of two divisions: the external division (TA-X), which is homogeneously 2b/eo, and the vocalis division (TA-V), composed principally of 2x and 2b/eo fibers with a minority of 2x/2b fibers. TA-V had two compartments that differ in fiber type composition. At 4 weeks after cutting and re-uniting the recurrent laryngeal nerve (RLN), many 2b/eo fibers in the TA-X began to express 2X MyHC, while EO and 2B MyHC expression in these fibers progressively declined. By 12 weeks, up to 16.5% of fibers in the TA-X were of type 2x. These findings suggest that nerve fibers originally innervating 2x fibers in TA-V and other muscles have randomly cross-innervated 2b/eo fibers in the TA-X and converted them into 2x fibers. We conclude that CT and TA are distinct muscle allotypes and that laryngeal muscle fibers are subject to neural regulation.  相似文献   

9.
Asymmetric osteoarthritis (OA) is a common type of OA in the ankle joint. OA also influences the muscles surrounding a joint, however, little is known about the muscle activation in asymmetric ankle OA. Therefore, the aim of this study was to characterize the patients’ muscle activation during isometric ankle torque measurements and level walking. Surface electromyography (EMG) was measured of gastrocnemius medialis (GM) and lateralis (GL), soleus (SO), tibialis anterior (TA), and peroneus longus (PL) in 12 healthy subjects and 12 ankle OA patients. To obtain time and frequency components of the EMG power a wavelet transformation was performed. Furthermore, entropy was introduced to characterize the homogeneity of the wavelet patterns.Patients produced lower plantar- and dorsiflexion torques and their TA wavelet spectrum was shifted towards lower frequencies. While walking, the patients’ muscles were active with a lower intensity and over a broader time–frequency region. In contrast to controls and varus OA patients, maximal GM activity of valgus OA patients lagged behind the activity of GL and SO. In both tasks, PL of the valgus patients contained more low frequency power. The results of this study will help to assess whether surgical interventions of ankle OA can reestablish the muscle activation patterns.  相似文献   

10.
Sixteen subjects (aged 54.2 ± 14.1 years) with hemiparesis (7.9 ± 7.1 years since diagnosis) demonstrating a foot-drop and hamstrings muscle weakness were fitted with a dual-channel functional electrical stimulation (FES) system activating the dorsiflexors and hamstrings muscles. Measurements of gait performance were collected after a conditioning period of 6 weeks, during which the subjects used the system throughout the day. Gait was assessed with and without the dual-channel FES system, as well as with peroneal stimulation alone. Outcomes included lower limb kinematics and the step length taken with the non-paretic leg. Results with the dual-channel FES indicate that in the subgroup of subjects who demonstrated reduced hip extension but no knee hyperextension (n = 9), hamstrings FES increased hip extension during terminal stance without affecting the knee. Similarly, in the subgroup of subjects who demonstrated knee hyperextension but no limitation in hip extension (n = 7), FES restrained knee hyperextension without having an impact on hip movement. Additionally, step length was increased in all subjects. The peroneal FES had a positive effect only on the ankle. The results suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect lower limb control beyond that which can be attributed to peroneal stimulation alone.  相似文献   

11.
During functional electrical stimulation (FES), both the frequency and intensity can be increased to increase muscle force output and counteract the effects of muscle fatigue. Most current FES systems, however, deliver a constant frequency and only vary the stimulation intensity to control muscle force. This study compared muscle performance and fatigue produced during repetitive electrical stimulation using three different strategies: (1) constant pulse-duration and stepwise increases in frequency (frequency-modulation); (2) constant frequency and stepwise increases in pulse-duration (pulse-duration-modulation); and (3) constant frequency and pulse-duration (no-modulation). Surface electrical stimulation was delivered to the quadriceps femoris muscles of 12 healthy individuals and isometric forces were recorded. Muscle performance was assessed by measuring the percent changes in the peak forces and force-time integrals between the first and the last fatiguing trains. Muscle fatigue was assessed by measuring percent declines in peak force between the 60Hz pre- and post-fatigue testing trains. The results showed that frequency-modulation showed better performance for both peak forces and force-time integrals in response to the fatiguing trains than pulse-duration-modulation, while producing similar levels of muscle fatigue. Although frequency-modulation is not commonly used during FES, clinicians should consider this strategy to improve muscle performance.  相似文献   

12.
The purpose of this study was to characterize the effects of aging on the stretch reflex in the ankle muscles, and in particular to compare the effects on the ankle dorsi-flexor (tibialis anterior: TA) and the plantar-flexor (soleus: SOL). Stretch reflex responses were elicited in the TA and SOL at rest and during weak voluntary contractions in 20 elderly and 23 young volunteers. The results indicated that, in the TA muscle, the elderly group had a remarkably larger long-latency reflex (LLR), whereas no aging effect was found in the short latency reflex (SLR). These results were very different from those in the SOL muscle, which showed significant aging effects in the SLR and medium latency reflex (MLR), but not in the LLR. Given the fact that the LLR of the TA stretch reflex includes the cortical pathway, it is probable that the effects of aging on the TA stretch reflex involve alterations not only at the spinal level but also at the cortical level. The present results indicate that the stretch reflexes of each of the ankle antagonistic muscles are affected differently by aging, which might have relevance to the neural properties of each muscle.  相似文献   

13.
In the present work, a generic model for the prediction of moment-angle characteristics in individual human skeletal muscles is presented. The model's prediction is based on the equation M = V x Lo(-1)sigma c cos phi x d, where M, V, and Lo are the moment-generating potential of the muscle, the muscle volume and the optimal muscle fibre length, respectively, and sigma, phi and d are the stress-generating potential of the muscle fibres, their pennation angle and the tendon moment arm length, respectively, at any given joint angle. The input parameters V, Lo, sigma, phi and d can be measured or derived mechanistically. This eliminates the common problem of the necessity to estimate one or more of the input parameters in the model by fitting its outcome to experimental results often inappropriate for the function modelled. The model's output was validated by comparisons with the moment-angle characteristics of the gastrocnemius (GS) and tibialis anterior (TA) muscles in six men, determined experimentally using voluntary contractions at several combinations of ankle and knee joint angles for the GS muscle and electrical stimulation for the TA muscle. Although the model predicted realistically the pattern of moment-angle relationship in both muscles, it consistently overestimated the GS muscle M and consistently underestimated the TA muscle M, with the difference gradually increasing from dorsiflexion to plantarflexion in both cases. The average difference between predicted and measured M was 14% for the GS muscle and 10% for the TA muscle. Approximating the muscle fibres as a single sarcomere in both muscles and failing to achieve complete TA muscle activation by electrical stimulation may largely explain the differences between theory and experiment.  相似文献   

14.
Loss of mobility due to lower limb paralysis is a common result of thoracic level spinal cord injury. Functional electrical stimulation (FES) can restore primitive gait in the vicinity of a wheelchair by using electrical stimulation to generate muscle contractions. A new concept for FES-assisted gait is presented that combines electrical stimulation with an orthosis that contains a fluid power system to store and transfer energy during the gait cycle. The energy storage orthosis (ESO) can be driven through a complete gait cycle using only stimulation of the quadriceps muscles. The conceptual design of the ESO was completed and implemented in a dynamic simulation model and in a benchtop prototype for engineering measurements. No studies were conducted with human subjects. The results demonstrate the potential of the ESO concept for a feasible gait-assist system and the validity of the simulation model as a means for designing the system.  相似文献   

15.
We determined the effect of muscle contractions resulting from high-frequency electrical stimulation (HFES) on inflammatory cells in rat tibialis anterior (TA), plantaris (Pln), and soleus (Sol) muscles at 6, 24, and 72 h post-HFES. A minimum of four and a maximum of seven rats were analyzed at each time point. HFES, applied to the sciatic nerve, caused the Sol and Pln to contract concentrically and the TA to contract eccentrically. Neutrophils were higher (P < 0.05) at 6 and 24 h after HFES in the Sol, Pln, and TA muscles relative to control muscles. ED1(+) macrophages in the Pln were elevated at 6 and 24 h after HFES and were also elevated in the Sol and TA after HFES relative to controls. ED2(+) macrophages in the Sol and TA were elevated at 24 and 72 h after HFES, respectively, and were also elevated in the Pln after HFES relative to controls. In contrast to the TA muscles, the Pln and Sol muscles showed no gross histological abnormalities. Collectively, these data indicate that both eccentric and concentric contractions can increase inflammatory cells in muscle, regardless of whether overt histological signs of injury are apparent.  相似文献   

16.
We have created a model to estimate the corrective changes in muscle activation patterns needed for a person who has had a stroke to walk with an improved gait-nearing that of an unimpaired person. Using this model, we examined how different functional electrical stimulation (FES) protocols would alter gait patterns. The approach is based on an electromyographically (EMG)-driven model to estimate joint moments. Different stimulation protocols were examined, which generated different corrective muscle activation patterns. These approaches grouped the muscles together into flexor and extensor groups (to simulate FES using surface electrodes) or left each muscle to vary independently (to simulate FES using intramuscular electrodes). In addition, we limited the maximal change in muscle activation (to reduce fatigue). We observed that with the two protocols (grouped and ungrouped muscles), the calculated corrective changes in muscle activation yielded improved joint moments nearly matching those of unimpaired subjects. The protocols yielded different muscle activation patterns, which could be selected based on practical condition. These calculated corrective muscle activation changes can be used in studying FES protocols, to determine the feasibility of gait retraining with FES for a given subject and to determine which protocols are most reasonable.  相似文献   

17.
Dynamic optimization of human walking   总被引:17,自引:0,他引:17  
A three-dimensional, neuromusculoskeletal model of the body was combined with dynamic optimization theory to simulate normal walking on level ground. The body was modeled as a 23 degree-of-freedom mechanical linkage, actuated by 54 muscles. The dynamic optimization problem was to calculate the muscle excitation histories, muscle forces, and limb motions subject to minimum metabolic energy expenditure per unit distance traveled. Muscle metabolic energy was calculated by slimming five terms: the basal or resting heat, activation heat, maintenance heat, shortening heat, and the mechanical work done by all the muscles in the model. The gait cycle was assumed to be symmetric; that is, the muscle excitations for the right and left legs and the initial and terminal states in the model were assumed to be equal. Importantly, a tracking problem was not solved. Rather only a set of terminal constraints was placed on the states of the model to enforce repeatability of the gait cycle. Quantitative comparisons of the model predictions with patterns of body-segmental displacements, ground-reaction forces, and muscle activations obtained from experiment show that the simulation reproduces the salient features of normal gait. The simulation results suggest that minimum metabolic energy per unit distance traveled is a valid measure of walking performance.  相似文献   

18.
The Static Optimization (SO) solver in OpenSim estimates muscle activations and forces that only equilibrate applied moments. In this study, SO was enhanced through an open-access MATLAB interface, where calculated muscle activations can additionally satisfy crucial mechanical stability requirements. This Stability-Constrained SO (SCSO) is applicable to many OpenSim models and can potentially produce more biofidelic results than SO alone, especially when antagonistic muscle co-contraction is required to stabilize body joints. This hypothesis was tested using existing models and experimental data in the literature. Muscle activations were calculated by SO and SCSO for a spine model during two series of static trials (i.e. simulation 1 and 2), and also for a lower limb model (supplementary material 2). In simulation 1, symmetric and asymmetric flexion postures were compared, while in simulation 2, various external load heights were compared, where increases in load height did not change the external lumbar flexion moment, but necessitated higher EMG activations. During the tasks in simulation 1, the predicted muscle activations by SCSO demonstrated less average deviation from the EMG data (6.8% −7.5%) compared to those from SO (10.2%). In simulation 2, SO predicts constant muscle activations and forces, while SCSO predicts increases in the average activations of back and abdominal muscles that better match experimental data. Although the SCSO results are sensitive to some parameters (e.g. musculotendon stiffness), when considering the strategy of the central nervous system in distributing muscle forces and in activating antagonistic muscles, the assigned activations by SCSO are more biofidelic than SO.  相似文献   

19.
The inverse dynamics technique applied to musculoskeletal models, and supported by optimisation techniques, is used extensively to estimate muscle and joint reaction forces. However, the solutions of the redundant muscle force sharing problem are sensitive to the detail and modelling assumptions of the models used. This study presents four alternative biomechanical models of the upper limb with different levels of discretisation of muscles by bundles and muscle paths, and their consequences on the estimation of the muscle and joint reaction forces. The muscle force sharing problem is solved for the motions of abduction and anterior flexion, acquired using video imaging, through the minimisation of an objective function describing muscle metabolic energy consumption. While looking for the optimal solution, not only the equations of motion are satisfied but also the stability of the glenohumeral and scapulothoracic joints is preserved. The results show that a lower level of muscle discretisation provides worse estimations regarding the muscle forces. Moreover, the poor discretisation of muscles relevant to the joint in analysis limits the applicability of the biomechanical model. In this study, the biomechanical model of the upper limb describing the infraspinatus by a single bundle could not solve the complete motion of anterior flexion. Despite the small differences in the magnitude of the forces predicted by the biomechanical models with more complex muscular systems, in general, there are no significant variations in the muscular activity of equivalent muscles.  相似文献   

20.
The purpose of this study was to develop a new rodent model that is capable of delineating the importance of mechanical loading on myosin heavy chain (MHC) isoform expression of the plantar and dorsi flexor muscles of the ankle. The essential components of this system include 1) stimulating electrodes that are chronically implanted into a muscle, allowing for the control of the activation pattern of the target muscle(s); 2) a training apparatus that translates the moment of the ankle into a linear force; and 3) a computer-controlled Cambridge 310 ergometer. The isovelocity profile of the ergometer ensured that the medial gastrocnemius (MG) produced forces that were > 90% of maximal isometric force (Po), and the eccentric contractions of the tibialis anterior (TA) were typically 120% of Po. Both the concentric and eccentric training programs produced statistically significant increases in the muscle mass of the MG (approximately 15%) and TA (approximately 7%) as well as a decrease in myofibrillar adenosinetriphosphatase activity. Both the white and red regions of the MG and TA exhibited significant increases in the relative content of the type IIa MHC and concomitant decreases in type IIb MHC expression. Although the red regions of the MG and red TA contained approximately 10% type I MHC, the training programs did not affect this isoform. It appears that when a fast-twitch muscle is stimulated at a high frequency (100 Hz) and required to contract either concentrically or eccentrically under high loading conditions, the expression of the type IIa MHC isoform will be upregulated, whereas that of the type IIb MHC will be concomitantly downregulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号