首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Effects of Water Stress on Fruit Quality Attributes of Kiwifruit   总被引:5,自引:0,他引:5  
Four-year-old kiwifruit vines (Actinidia deliciosa(A. Chev.)C. F. Liang et A. R. Ferguson var.deliciosacv. Hayward) werestudied to determine response of the plant and effects on fruitquality when irrigation water was withheld either early or latein the growing season. The greatest effect on fruit growth occurredwhen water was withheld early in the season. Harvest weightof fruit from early-stressed vines was approx. 25% less thanthe weight of fruit on control vines. Early season water stressresulted in a transient increase in concentrations of solublecarbohydrates in both leaves and fruit. This was accompaniedby a reduction in stomatal conductance of the leaves. Starchlevels in leaves but not fruit were reduced by both stress treatments.Concentrations of sucrose at harvest in fruit from vines stressedlate in the season were markedly higher than in other fruit,and softness of the fruit was unaffected. These differenceswere maintained through the 12 weeks in cool storage after harvest.Withholding irrigation water to kiwifruit vines late in theseason may prove a useful management tool to manipulate somequality attributes of the fruit.Copyright 1998 Annals of BotanyCompany Kiwifruit;Actinidia deliciosa; water stress; fruit quality; soluble solids.  相似文献   

2.
3.
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50–60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24–28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.  相似文献   

4.
Fluxes of carbohydrate metabolism in ripening bananas   总被引:1,自引:0,他引:1  
The major fluxes of carbohydrate metabolism were estimated during starch breakdown by ripening bananas (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21° C. Production of CO2 and the contents of starch, sucrose, glucose and fructose of intact fruit were determined for a period of 10 d that included the climacteric. The detailed distribution of label was determined after supplying the following to cores of pulp from climacteric fruit: [U-14C]-, [1-14C]-, [3,4-14C]-and [6-14C]glucose, [U-14C]glycerol, 14CO2. The data obtained were used to estimate the following fluxes, values given as mol hexose · (g FW)–1 · h–1 in parenthesis: starch to hexose monophosphates (5.9) and vice versa (0.4); hexose monophosphates to sucrose (7.7); sucrose to hexose (4.7); hexose to hexose monophosphate (3.8); glycolysis (0.5–1.6); triose phosphate to hexose monophosphates (0.14); oxidative pentose-phosphate pathway (0.48); CO2 fixation in the dark (0.005). These estimates are related to our understanding of carbohydrate metabolism during ripening.We both thank Mr Richard Trethewey for his constructive criticism: S.A.H. thanks the Managers of the Broodbank Fund for a fellowship.  相似文献   

5.
Some characteristics of phosphoglucose isomerase (PGI, EC 5.3.1.9) from banana were measured during fruit ripening of three banana cultivars. In banana, PGI was present as two dimeric isoenzymes, named PGI1 and PGI2, which had similar native molecular masses but differed in relation to heat stability and isoelectric point. Total PGI activity showed a distinct two-step change during fruit ripening. Before the climacteric period, PGI activity gradually decreased with the starch content, then its activity began to increase with sucrose accumulation. The ratio of PGI1, and PGI2 was constant, indicating that both enzymes would be involved in starch degradation and sucrose synthesis. PGI activity and changes in carbohydrate composition suggests the existence of some control to fit the requirements of the intense carbon flow from starch to sucrose.  相似文献   

6.
Growth, accumulation of sugars and starch, and the activity of enzymes involved in sucrose mobilization were determined throughout the development of sweet pepper fruits. Fruit development was roughly divided into three phases: (1) an initial phase with high relative growth rate and hexose accumulation, (2) a phase with declining growth rate and accumulation of sucrose and starch, and (3) a ripening phase with no further fresh weight increase and with accumulation of hexoses, while sucrose and starch were degraded. Acid and neutral invertase (EC 3.2.1.26) were closely correlated to relative growth rate until ripening and inversly correlated to the accumulation of sucrose. Acid invertase specifically increased during ripening, concurrently with the accumulation of hexoses. Sucrose synthase (EC 2.4.1.13) showed little correlation to fruit development, and in periods of rapid growth the activity of sucrose synthase was low compared to the invertases. However, during late fruit growth sucose synthase was more active than the invertases. We conclude that invertase activities determine the accumulation of assimilates in the very young fruits, and a reactivation of acid invertase is responsible for the accumulation of hexoses during ripening. During late fruit growth, before ripening, sucrose synthase is transiently responsible for the sucrose breakdown in the fruit tissue. Results also indicate that pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90) and its activator fructose-2,6-bisphosphate (Fru2,6bisP) are involved in the regulation of the sink metabolism of the fruit tissue.  相似文献   

7.
The role of sucrose synthase (SuSy) in tomato fruit was studied in transgenic tomato (Lycopersicon esculentum) plants expressing an antisense fragment of fruit-specific SuSy RNA (TOMSSF) under the control of the cauliflower mosaic virus 35S promoter. Constitutive expression of the antisense RNA markedly inhibited SuSy activity in flowers and fruit pericarp tissues. However, inhibition was only slight in the endosperm and was undetectable in the embryo, shoot, petiole, and leaf tissues. The activity of sucrose phosphate synthase decreased in parallel with that of SuSy, but acid invertase activity did not increase in response to the reduced SuSy activity. The only effect on the carbohydrate content of young fruit was a slight reduction in starch accumulation. The in vitro sucrose import capacity of fruits was not reduced by SuSy inhibition at 23 days after anthesis, and the rate of starch synthesized from the imported sucrose was not lessened even when SuSy activity was decreased by 98%. However, the sucrose unloading capacity of 7-day-old fruit was substantially decreased in lines with low SuSy activity. In addition, the SuSy antisense fruit from the first week of flowering had a slower growth rate. A reduced fruit set, leading to markedly less fruit per plant at maturity, was observed for the plants with the least SuSy activity. These results suggest that SuSy participates in the control of sucrose import capacity of young tomato fruit, which is a determinant for fruit set and development.  相似文献   

8.
Some characteristics of phosphoglucose isomerase (PGI, EC 5.3.1.9) from banana were measured during fruit ripening of three banana cultivars. In banana, PGI was present as two dimeric isoenzymes, named PGI1 and PGI2, which had similar native molecular masses but differed in relation to heat stability and isoelectric point. Total PGI activity showed a distinct two-step change during fruit ripening. Before the climacteric period, PGI activity gradually decreased with the starch content, then its activity began to increase with sucrose accumulation. The ratio of PGI1, and PGI2 was constant, indicating that both enzymes would be involved in starch degradation and sucrose synthesis. PGI activity and changes in carbohydrate composition suggests the existence of some control to fit the requirements of the intense carbon flow from starch to sucrose.  相似文献   

9.
The effects of varying nitrogen supply on canopy leaf area, response of leaf net photosynthesis (An) to quantum flux density (Q), and fruit yields of kiwifruit vines (Actinidia deliciosa var. deliciosa) were examined in a two-year field experiment. Vines were grown with 0, 250 or 750 kg N ha?1 year?1. The responses to nitrogen supply were compared with responses to shade, to examine the impact of reduced carbon assimilation on canopy leaf area and fruit yields. Nitrogen supply did not affect significantly any of the measured variables during the first season of the experiment. In the second season, canopy leaf area was reduced significantly where nitrogen supply was limited. The quantum efficiency of photosynthesis (φq) increased from 0. 03 mol CO2 mol?1 Q soon after leaf emergence to more than 0. 05 mol CO2 mol?1 Q during the middle of the growing season. The quantum saturated rate of An (Asat) also increased during the season, from 7–10 μmol CO2 m?2 s?1 soon after leaf emergence, to 15–20 (μmol CO2 m?2 s?1 during the middle of the growing season. φq and Asat increased significantly with nitrogen supply at all measurement times during the second season. For vines with high nitrogen, fruit yields in both seasons were similar, averaging 3. 05 kg m?2. Fruit yields in the second season were reduced significantly where nitrogen supply was limited, due to reduced fruit numbers. The relative effects of reduced leaf area and reduced leaf photosynthesis for carbon assimilation by nitrogen deficient vines were examined using a mathematical model of canopy photosynthesis for kiwifruit vines. Simulations of canopy photosynthesis indicated that effects on leaf area and on leaf photosynthesis were of similar importance in the overall effects of nitrogen deficiency on carbon assimilation. The effects of nitrogen supply on fruit numbers (i. e. flower development) preceded the measured effects on carbon assimilation, indicating that the nitrogen supply affected carbon partitioning to reserves in the first season.  相似文献   

10.
The increased supply of photosynthate from maternal tissue is known to promote grain growth in several crop species. However, the effect of increasing photosynthate supply on grain growth receives little attention in rice. This study was aimed at evaluating the effect of increasing photosynthate supply through CO2 enrichment (650 μl I-1) on grain growth in three rice cultivars differing in grain size. CO2 enrichment was applied to the pot-grown plants between anthesis and final harvest. The results indicated that high CO2 treatment enhanced the CO2 exchange rate of leaf tissue, and subsequently increased the sucrose level of peduncle exudate, but it did not promote starch accumulation in the developing grains. This phenomenon was linked to the poor CO2 responses for the grain activities of sucrose synthase, UDP-glucose pyrophosphorylase. ADP-glucose pyrophosphorylase, and starch synthases involved in the conversion of sucrose to starch. Significant cultivar differences also existed for the activities of sucrose to starch conversion enzymes with larger grain size cultivars tending to have higher enzymes activities (expressed on a grain basis), resulting in a greater carbohydrate accumulation.  相似文献   

11.
分别对中华猕猴桃(Actinidia chinensis)黄肉品种‘金桃’和毛花猕猴桃(Actinidia eriantha)品系‘6113’果实生长发育过程中碳水化合物及维生素C的动态变化进行了系统研究。结果表明,中华猕猴桃‘金桃’和毛花猕猴桃‘6113’果实的可溶性固形物(SSC)含量均于谢花后146d内保持相对平稳,而后开始上升;此时,两物种果实的淀粉含量均上升到最大值,之后两者均开始下降。两者糖含量的变化与SSC相似,且中华猕猴桃‘金桃’果实糖含量进入快速增长期的时间比毛花猕猴桃‘6113’早1个月。两者果实Vc含量的变化趋势相似,均于7月上中旬达到一个高峰,以后随着果实的生长发育,含量下降,‘金桃’于8月14日降至最低值,‘6113’于9月13日降至最低值;两者的Vc含量降到最低值后均缓慢上升,到果实完全成熟期(树上自然软熟期)回升到第二个峰值。‘6113’果实的Vc含量在完全成熟期的峰值远远高于7月上旬的高峰值。对‘金桃’和‘6113’果实碳水化合物及Vc含量方差分析表明,两者的可溶性固形物、淀粉和总糖没有明显差异,而毛花猕猴桃‘6113’的Vc含量显著高于中华猕猴桃‘金桃’。  相似文献   

12.
Photosynthetic carbon metabolism was investigated in antisense Arabidopsis lines with decreased expression of sucrose phosphate synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (cFBPase). In the light, triose phosphates are exported from the chloroplast and converted to sucrose via cFBPase and SPS. At night, starch is degraded to glucose, exported and converted to sucrose via SPS. cFBPase therefore lies upstream and SPS downstream of the point at which the pathways for sucrose synthesis in the day and night converge. Decreased cFBPase expression led to inhibition of sucrose synthesis; accumulation of phosphorylated intermediates; Pi-limitation of photosynthesis; and stimulation of starch synthesis. The starch was degraded to maintain higher levels of sugars and a higher rate of sucrose export during the night. This resembles the response in other species when expression of enzymes in the upper part of the sucrose biosynthesis pathway is reduced. Decreased expression of SPS inhibited sucrose synthesis, but phosphorylated intermediates did not accumulate and carbon partitioning was not redirected towards starch. Sugar levels and sucrose export was decreased during the night as well as during the day. Although ribulose-1,5-bisphosphate regeneration and photosynthesis were inhibited, the PGA/triose-P ratio remained low and the ATP/ADP ratio high, showing that photosynthesis was not limited by the rate at which Pi was recycled during end-product synthesis. Two novel responses counteracted the decrease in SPS expression and explain why phosphorylated intermediates did not accumulate, and why allocation was not altered in the antisense SPS lines. Firstly, a threefold decrease of PPi and a shift of the UDP-glucose/hexose phosphate ratio favoured sucrose synthesis and prevented the accumulation of phosphorylated intermediates. Secondly, there was no increase of AGPase activity relative to cFBPase activity, which would prevent a shift in carbon allocation towards starch synthesis. These responses are presumably triggered when sucrose synthesis is decreased in the night, as well as by day.  相似文献   

13.
Seasonal Accumulation of Starch by Components of the Kiwifruit Vine   总被引:2,自引:2,他引:0  
The accumulation of starch by various components of 6-year-oldkiwifruit vines (Actinidia deliciosa var dehciosa cv Hayward)was recorded over one season Twenty vines were harvested periodicallythroughout the year and separated into perennial components(fibrous roots, structural roots, stump, stem, cordon, laterals)and current season's growth (shoots, leaves, and fruit) The concentration of starch in the fibrous roots followed asinusoidal trend Minimum concentrations occurred 98 d afterbudbreak, while the maximum concentrations occurred 182 d laterCorresponding times in the structural roots were approximately42 d earlier In the above-ground perennial components, elevatedconcentrations of starch in the cordon, fruiting wood and barkof the stem were evident at budbreak and fruit harvest (approx220 d later) In the case of the stem, concentrations were greatestat fruit harvest Because the biomass of the perennial componentswas found to be relatively constant throughout the year, starchconcentrations and contents were directly proportional in thesetissues For current season's growth, peak concentrations and contentsin leaves and shoots were observed at fruitset and fruit harvest,respectively For fruit, starch increased continuously untilharvest Approximately 30% of the total starch content accumulated inthe perennial components by leaf abscission was lost duringwinter and early summer Quantitative losses were greatest forthe roots Regeneration of the starch pools in the perennialcomponents of the vine occurred from midseason until leaf abscissionAt the same time, approximately five times more starch was accumulatedby the current season's growth, in particular the fruit, thanby the perennial components As a result of the difference inthe rate of accumulation, the starch content of the currentseason's growth increased from less than 10% midseason to nearly60% of the total starch content of the vine by fruit harvest The results were discussed in relation to the carbon economyof the kiwifruit vine, and compared with seasonal trends instarch concentrations found for other deciduous crops Actinidia deliciosa, kiwifruit, seasonal changes, starch content, whole plant  相似文献   

14.
Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo‐inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.  相似文献   

15.
To identify the molecular mechanisms underlying carbohydrate allocation to storage processes, we have isolated mutants in which the sugar induction of starch biosynthetic gene expression was impaired. Here we describe the IMPAIRED SUCROSE INDUCTION1 (ISI1) gene, which encodes a highly conserved plant-specific protein with structural similarities to Arm repeat proteins. ISI1 is predominantly expressed in the phloem of leaves following the sink-to-source transition during leaf development, but is also sugar-inducible in mesophyll cells. Soil-grown isi1 mutants show reduced plant growth and seed set compared to wild-type Arabidopsis. This growth reduction is not due to reduced carbohydrate availability or a defect in sucrose export from mature leaves, suggesting that isi1 mutant plants do not utilize available carbohydrate resources efficiently. ISI1 interacts synergistically with, but is genetically distinct from, the abscisic acid (ABA) signalling pathway controlling sugar responses via ABI4. Our data show that ISI1 couples the availability of carbohydrates to the control of sugar-responsive gene expression and plant growth.  相似文献   

16.
17.
Effects of girdling on carbohydrate status and carbohydrate-related gene expression in citrus trees were investigated. Alternate-bearing 'Murcott' (a Citrus reticulata hybrid of unknown origin) trees were girdled during autumn (25 Sep. 2001) and examined 10 weeks later. Girdling brought about carbohydrate (soluble sugar and starch) accumulation in leaves and shoot bark above the girdle, in trees during their fruitless, 'off' year. Trees during their heavy fruit load, 'on' year did not accumulate carbohydrates above the girdle due to the high demand for carbohydrates by the developing fruit. Girdling caused a strong decline in soluble sugar and starch concentrations in organs below the girdle (roots), in both 'on' and 'off' trees. Expression of STPH-L and STPH-H (two isoforms of starch phosphorylase), Agps (ADP-glucose pyrophosphorylase, small subunit), AATP (plastidic ADP/ATP transporter), PGM-C (phosphoglucomutase) and CitSuS1 (sucrose synthase), all of which are associated with starch accumulation, was studied. It was found that gene expression is related to starch accumulation in all 'off' tree organs. RNA levels of all the genes examined were high in leaves and bark that accumulated high concentrations of starch, and low in roots with declining starch concentrations. It may be hypothesized that changes in specific sugars signal the up- and down-regulation of genes involved in starch synthesis.  相似文献   

18.
The aim of this work was to investigate the effects on carbohydrate metabolism of a reduction in the capacity to degrade leaf starch in Arabidopsis. The major roles of leaf starch are to provide carbon for sucrose synthesis, respiration and, in developing leaves, for biosynthesis and growth. Wild-type plants were compared with plants of a starch-excess mutant line (sex4) deficient in a chloroplastic isoform of endoamylase. This mutant has a reduced capacity for starch degradation, leading to an imbalance between starch synthesis and degradation and the gradual accretion of starch as the leaves age. During the night the conversion of starch into sucrose in the mutant is impaired; the leaves of the mutant contained less sucrose than those of the wild type and there was less movement of 14C-label from starch to sucrose in radio-labelling experiments. Furthermore, the rate of assimilate export to the roots during the night was reduced in the mutant compared with the wild type. During the day however, photosynthetic partitioning was altered in the mutant, with less photosynthate partitioned into starch and more into sugars. Although the sucrose content of the leaves of the mutant was similar to the wild type during the day, the rate of export of sucrose to the roots was increased more than two-fold. The changes in carbohydrate metabolism in the mutant leaves during the day compensate partly for its reduced capacity to synthesize sucrose from starch during the night.  相似文献   

19.
Current concepts of the factors determining sink strength and the subsequent regulation of carbohydrate metabolism in tomato fruit are based upon an understanding of the relative roles of sucrose synthase, sucrose phosphate synthase and invertase, derived from studies in mutants and transformed plants. These enzymes participate in at least four futile cycles that involve sugar transport between the cytosol, vacuole and apoplast. Key reactions are (1) the continuous rapid degradation of sucrose in the cytosol by sucrose synthase (SuSy), (2) sucrose re-synthesis via either SuSy or sucrose phosphate synthase (SPS), (3) sucrose hydrolysis in the vacuole or apoplast by acid invertase, (4) subsequent transport of hexoses to the cytosol where they are once more converted into sucrose, and (5) rapid synthesis and breakdown of starch in the amyloplast. In this way futile cycles of sucrose/hexose interchange govern fruit sugar content and composition. The major function of the high and constant invertase activity in red tomato fruit is, therefore, to maintain high cellular hexose concentrations, the hydrolysis of sucrose in the vacuole and in the intercellular space allowing more efficient storage of sugar in these compartments. Vacuolar sugar storage may be important in sustaining fruit cell growth at times when less sucrose is available for the sink organs because of exhaustion of the carbohydrate pools in source leaves.  相似文献   

20.
This study was undertaken to determine the role of sucrose-metabolizing enzymes in altered carbohydrate partitioning caused by heat stress. Potato (Solanum tuberosum L.) genotypes characterized as susceptible and tolerant to heat stress were grown at 19/17[deg]C, and a subset was transferred to 31/29[deg]C. Data were obtained for plant growth and photosynthesis. Enzyme activity was determined for sucrose-6-phosphate synthase (SPS) in mature leaves and for sucrose synthase, ADP-glucose pyrophosphorylase, and UDP-glucose pyrophosphorylase in developing tubers of plants. High temperatures reduced growth of tubers more than of shoots. Photosynthetic rates were unaffected or increased slightly at the higher temperature. Heat stress increased accumulation of foliar sucrose and decreased starch accumulation in mature leaves but did not affect glucose. SPS activity increased significantly in mature leaves of plants subjected to high temperature. Changes in SPS activity were probably not due to altered enzyme kinetics. The activity of sucrose synthase and ADP-glucose pyrophosphorylase was reduced in tubers, albeit less quickly than leaf SPS activity. There was no interaction of temperature and genotype with regard to the enzymes examined; therefore, observed differences do not account for differences between genotypes in heat susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号