首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA duplexes containing a single phosphoryldisulfide link in place of the natural internucleotide phosphodiester bond were employed in affinity modification of Cys142 in cytosine-C5 DNA methyltransferase SsoII (M.SsoII). The possibility of duplex-M.SsoII conjugation as a result of disulfide exchange was demonstrated. The crosslinking efficiency proved to depend on the DNA primary structure, modification position, and the presence of S-adenosyl-L-homocysteine, a nonreactive analog of the methylation cofactor. The SH group of M.SsoII Cys142 was assumed to be close to the DNA sugar-phosphate backbone in the DNA-enzyme complex.  相似文献   

2.
3.
4.
5.
6.
Oligonucleotides containing 2-aminopurine (2-AP) in place of G or A in the recognition site of EcoRII (CCT/AGG) or SsoII (CCNGG) restriction endonucleases have been synthesized in order to investigate the specific interaction of DNA with these enzymes. Physicochemical properties (CD spectra and melting behaviour) have shown that DNA duplexes containing 2-aminopurine exist largely in a stable B-like form. 2-Aminopurine base paired with cytidine, however, essentially influences the helix structure. The presence of a 2-AP-C mismatch strongly reduces the stability of the duplexes in comparison with the natural double strand, indicated by a biphasic melting behaviour. SsoII restriction endonuclease recognizes and cleaves the modified substrate with a 2-AP-T mismatch in the centre of the recognition site, but it does not cleave the duplexes containing 2-aminopurine in place of inner and outer G, or both. EcoRII restriction endonuclease does not cleave duplexes containing 2-aminopurine at all. The two-substrate mechanism of EcoRII-DNA interaction, however, allows hydrolysis of the duplex containing 2-aminopurine in place of adenine in the presence of the canonical substrate.  相似文献   

7.
A novel method for regulating the activity of homodimeric proteins--"molecular gate" approach--was proposed and its usefulness illustrated for the type II restriction endonuclease SsoII (R.SsoII) as a model. The "molecular gate" approach is based on the modification of R.SsoII with azobenzene derivatives, which allows regulating DNA binding and cleavage via illumination with light. R.SsoII variants with single cysteine residues introduced at selected positions were obtained and modified with maleimidoazobenzene derivatives. A twofold change in the enzymatic activity after illumination with light of wavelengths of 365 and 470 nm, respectively, was demonstrated when one or two molecules of azobenzene derivatives were attached to the R.SsoII at the entrance of or within the DNA-binding site.  相似文献   

8.
A study was made of the interaction between restriction endonucleases recognizing CCNGG (SsoII and ScrFI) or CCA/TGG (MvaI and EcoRII) DNA sequences and a set of synthetic substrates containing 1,3-propanediol, 1,2-dideoxy-D-ribofuranose or 9-[1'-hydroxy-2'-(hydroxymethyl)ethoxy] methylguanine (gIG) residues replacing either one of the central nucleosides or dG residues in the recognition site. The non-nucleotide inserts (except for gIG) introduced into the recognition site both increase the efficiency of SsoII and change its specificity. A cleavage at the noncanonical position takes place, in some cases in addition to the correct ones. Noncanonical hydrolysis by SsoII occurs at the phosphodiester bond adjacent to the point of modification towards the 5'-end. With the guanine base returned (the substrate with gIG), the correct cleavage position is restored. ScrFI specifically cleaves all the modified substrates. DNA duplexes with non-nucleotide inserts (except for the gIG-containing duplex) are resistant to hydrolysis by MvaI and EcoRII. Prompted by the data obtained we discuss the peculiarities of recognition by restriction endonucleases of 5-membered DNA sequences which have completely or partially degenerated central base pairs. It is suggested that SsoII forms a complex with DNA in an 'open' form.  相似文献   

9.
Specific protein-nucleic acid interactions are of paramount importance for the propagation, maintenance and expression of genetic information. Restriction endonucleases serve as model systems to study the mechanisms of DNA recognition by proteins. SsoII is a Type II restriction endonuclease that recognizes the double stranded sequence downward arrow CCNGG and cleaves it in the presence of Mg(2+)-ions, as indicated. SsoII shows sequence similarity over a stretch of approximately 70 amino acid residues with several other restriction endonucleases that recognize a similar sequence as SsoII (Cfr10I, EcoRII, NgoMIV, PspGI). In NgoMIV this stretch is involved in DNA recognition and cleavage, as shown by the crystal structure analysis of an enzyme-product complex. To find out whether the presumptive DNA recognition region in SsoII is indeed in contact with DNA we have photocrosslinked SsoII with an oligodeoxyribonucleotide in which the first guanine of the recognition sequence was replaced by 5-iodouracil. Following digestion by trypsin, the peptide-oligodeoxyribonucleotide conjugate was purified by Fe(3+)-IMAC and then incubated with hydrogen fluoride, which hydrolyzes the oligodeoxyribonucleotide to yield the peptide-deoxyuridine conjugate. The site of photocrosslinking was identified by MALDI-TOF-MS and MALDI-TOF-MS/MS to be Trp189, adjacent to Arg188, which aligns with Arg194 in NgoMIV, involved in recognition of the second guanine in the NgoMIV recognition sequence G downward arrow CCGGC. This result confirms previously published conclusions drawn on the basis of a mutational analysis of SsoII. The methodology that was employed here can be used in principle to identify the DNA binding site of any protein.  相似文献   

10.
We studied the interaction of EcoRII and SsoII restriction endonucleases with synthetic DNA duplexes, containing 3'N----5'P and 3'P----5'N phosphoamide internucleotide bonds in one of the cleavage points. Enzymatic hydrolysis of the modified strand of the duplexes is blocked in all cases. The presence of phosphoamide bonds was found to reduce the rate of cleavage of the natural strand by EcoRII and to have no influence in case of SsoII. Properties of the EcoRII endonuclease complex with its substrate, containing non-cleavable 3'N----5'P internucleotide bonds in each cleavage point, were examined. In the presence of Mg2+ ions the equilibrium association constant of the enzyme-substrate complex is 3-fold reduced, and the dissociation rate constant of the complex is increased by 1.5 times.  相似文献   

11.
The cleavage of synthetic DNA duplexes containing 1,3-propanediol, 1,2-dideoxy-D-ribofuranose or 9-[1'-hydroxy-2'-(hydroxymethyl)ethoxy]methylguanine (glG) residues instead of one of dG residues or one of the nucleosides of the central base pair of the recognition site by SsoII restriction endonuclease (decreases CCNGG) has been studied. It is found that the non-nucleotide insertions (except for glG) result in a change of the SsoII cleavage site and an increase of the efficiency of the cleavage. The novel noncanonical cleavage occurs at the phosphodiester bond adjoining the non-nucleotide insert from the 5'-end.  相似文献   

12.
DNA duplexes containing a single phosphoryldisulfide link in place of the natural internucleotide phosphodiester bond were employed in affinity modification of Cys142 in cytosine-C5 DNA methyltransferase SsoII (M.SsoII). The possibility of duplex–M.SsoII conjugation as a result of disulfide exchange was demonstrated. The crosslinking efficiency proved to depend on the DNA primary structure, modification position, and the presence of S-adenosyl-L-homocysteine, a nonreactive analog of the methylation cofactor. The SH group of M.SsoII Cys142 was assumed to be close to the DNA sugar-phosphate backbone in the DNA–enzyme complex.  相似文献   

13.
The interaction of DNA-methyltransferase Ecl18kI (M.Ecl18kI) with a fragment of promoter region of restriction-modification system SsoII was studied. It is shown that dissociation constants of M.Ecl18kI and M.SsoII complexes with DNA ligand carrying a regulatory site previously characterized for M.SsoII have comparable values. A deletion derivative of M.Ecl18kI, Δ(72–379)Ecl18kI, representing the N-terminal protein region responsible for regulation, was obtained. It is shown that such polypeptide fragment has virtually no interaction with the regulatory site. Therefore, the existence of a region responsible for methylation is necessary for maintaining M.Ecl18kI regulatory function. The properties of methyl-transferase NlaX, which is actually a natural deletion derivative of M.Ecl18kI and M.SsoII lacking the first 70 amino acid residues and not being able to regulate gene expression of the SsoII restriction-modification system, were studied. The ability of mutant forms of M.Ecl18kI incorporating single substitutions in regions responsible for regulation and methylation to interact with both sites of DNA recognition was characterized. The data show a correlation between DNA-binding activity of two M.Ecl18kI regions-regulatory and methylating.  相似文献   

14.
15.
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue in the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation.  相似文献   

16.
Chemical synthesis of a series of modified oligodeoxyribonucleotides containing one or two residues of thymidine glycol (5,6-dihydro-5,6-dihydroxythymidine), the main product of oxidative DNA damage, is described. The thermal stability of DNA duplexes containing thymidine glycol residues was studied using UV spectroscopy. Introduction of even one thymidine glycol residue into the duplex structure was shown to result in its significant destabilization. Data on the interaction of DNA methyltransferases and type II restriction endonucleases with DNA ligands containing oxidized thymine were obtained for the first time. Introduction of a thymidine glycol residue into the central degenerate position of the recognition site of restriction endonuclease SsoII was found to result in an increase in the initial hydrolysis rate of the modified duplex in comparison with that of the unmodified structure. The affinity of C5-cytosine methyltransferase SsoII for the DNA duplex bearing thymidine glycol was found to be twofold higher than for the unmodified substrate. However, such a modification of the DNA ligand prevents its methylation. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   

17.
The investigation of Sso II DNA-methyltransferase (M.Sso II) interaction with the intergenic region of Sso II restriction-modification system was carried out. Seven guanine residues protected by M. Sso II from methylation with dimethylsulfate and thus probably involved in enzyme-DNA recognition were identified. Six of them are located symmetrically within the 15 bp inverted repeat inside the Sso II promoter region. The crosslinking of Sso II methyltransferase with DNA duplexes containing 5-bromo-2'-deoxyuridine (br5dU) instead of thymidine was performed. The crosslinked products were obtained in all cases, thus proving that tested thymines were in proximity with enzyme. The ability to produce the crosslinked products in one case was 2-5-fold higher than in other ones. This allowed us to imply that thymine residue in this position of the inverted repeat could be in contact with M. Sso II. Based on the experimental data, two symmetrical 4 bp clusters (GGAC), which could be involved in the interaction with M. Sso II in the DNA-protein complex, were identified. The model of M. Sso II interaction with its own promoter region was proposed.  相似文献   

18.
Specific and non-specific interactions SsoII restriction endonuclease (R·SsoII) were probed by the method of covalent attachment to modified DNA containing an active monosubstituted pyrophosphate internucleotide bond instead of a phosphodiester one. R·SsoII with six N-terminal His residues was shown to be cross-linked to duplexes with this type of modification, either containing or not the recognition sequence. Competition experiments with covalent attachment of R·SsoII to activated DNAs demonstrated the similar affinity of the enzyme to cognate and non-cognate DNAs in the absence of cofactor, Mg2+ ions.  相似文献   

19.
We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.  相似文献   

20.
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号