首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB–Efnb2 signaling-deficient mice.  相似文献   

2.
The Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands provide critical guidance cues at points of cell-to-cell contact. It has recently been reported that the ephrin-B2 ligand is a molecular marker for the arterial endothelium at the earliest stages of embryonic angiogenesis, while its receptor EphB4 reciprocally marks the venous endothelium. These findings suggested that ephrin-B2 and EphB4 are involved in establishing arterial versus venous identity and perhaps in anastamosing arterial and venous vessels at their junctions. By using a genetically engineered mouse in which the lacZ coding region substitutes and reports for the ephrin-B2 coding region, we demonstrate that ephrin-B2 expression continues to selectively mark arteries during later embryonic development as well as in the adult. However, as development proceeds, we find that ephrin-B2 expression progressively extends from the arterial endothelium to surrounding smooth muscle cells and to pericytes, suggesting that ephrin-B2 may play an important role during formation of the arterial muscle wall. Furthermore, although ephrin-B2 expression patterns vary in different vascular beds, it can extend into capillaries about midway between terminal arterioles and postcapillary venules, challenging the classical conception that capillaries have neither arterial nor venous identity. In adult settings of angiogenesis, as in tumors or in the female reproductive system, the endothelium of a subset of new vessels strongly expresses ephrin-B2, once again contrary to earlier views that such new vessels lack arterial/venous characteristics and derive from postcapillary venules. While earlier studies had focused on a role for ephrin-B2 during the earliest embryonic stages of arterial/venous determination, our current findings using ephrin-B2 as an arterial marker in the adult challenge prevailing views of the arterial/venous identity of quiescent as well as remodeling adult microvessels and also highlight a possible role for ephrin-B2 in the formation of the arterial muscle wall.  相似文献   

3.
Vascular development begins with the formation of a primary vascular plexus that is rapidly remodeled by angiogenesis into the interconnected branched patterns characteristic of mature vasculature. Several receptor tyrosine kinases and their ligands have been implicated to control early development of the vascular system. These include the vascular endothelial growth factor receptors (VEGFR-1 and VEGFR-2) that bind VEGF, the Tie-1 and Tie-2 receptors that bind the angiopoietins, and the EphB4 receptor that binds the membrane-anchored ligand ephrin-B2. Targeted mutations in the mouse germline have revealed essential functions for these molecules in vascular development. In particular, protein-null mutations that delete either EphB4 or ephrin-B2 from the mouse have been shown to result in early embryonic lethality due to failed angiogenic remodeling. The venous expression of EphB4 and arterial expression of ephrin-B2 has lead to the speculation that the interaction of these two molecules leads to bidirectional signaling into both the receptor-expressing cell and the ligand-expressing cell, and that both forward and reverse signals are required for proper development of blood vessels in the embryo. Indeed, targeted removal of the ephrin-B2 carboxy-terminal cytoplasmic tail by another group was shown to perturb vascular development and result in the same early embryonic lethality as the null mutation, leading the authors to propose that ephrin-B2 reverse signaling directs early angiogenic remodeling of the primary vascular plexus [Cell 104 (2001) 57]. However, we show here that the carboxy-terminal cytoplasmic domain of ephrin-B2, and hence reverse signaling, is not required during early vascular development, but it is necessary for neonatal survival and functions later in cardiovascular development in the maturation of cardiac valve leaflets. We further show that ephrin-B2 reverse signaling is required for the pathfinding of axons that form the posterior tract of the anterior commissure. Our results thus indicate that ephrin-B2 functions in the early embryo as a typical instructive ligand to stimulate EphB4 receptor forward signaling during angiogenic remodeling and that later in embryonic development ephrin-B2 functions as a receptor to transduce reverse signals involved in cardiac valve maturation and axon pathfinding.  相似文献   

4.
We report that the disruption of bidirectional signaling between ephrin-B2 and EphB receptors impairs morphogenetic cell–cell septation and closure events during development of the embryonic midline. A novel role for reverse signaling is identified in tracheoesophageal foregut septation, as animals lacking the cytoplasmic domain of ephrin-B2 present with laryngotracheoesophageal cleft (LTEC), while both EphB2/EphB3 forward signaling and ephrin-B2 reverse signaling are shown to be required for midline fusion of the palate. In a third midline event, EphB2/EphB3 are shown to mediate ventral abdominal wall closure by acting principally as ligands to stimulate ephrin-B reverse signaling. Analysis of new ephrin-B26YFΔV and ephrin-B2ΔV mutants that specifically ablate ephrin-B2 tyrosine phosphorylation- and/or PDZ domain-mediated signaling indicates there are at least two distinct phosphorylation-independent components of reverse signaling. These involve both PDZ domain interactions and a non-canonical SH2/PDZ-independent form of reverse signaling that may utilize associations with claudin family tetraspan molecules, as EphB2 and activated ephrin-B2 molecules are specifically co-localized with claudins in epithelia at the point of septation. Finally, the developmental phenotypes described here mirror common human midline birth defects found with the VACTERL association, suggesting a molecular link to bidirectional signaling through B-subclass Ephs and ephrins.  相似文献   

5.
Craniofrontonasal syndrome (CFNS) is an X-linked craniofacial disorder with an unusual manifestation pattern, in which affected females show multiple skeletal malformations, whereas the genetic defect causes no or only mild abnormalities in male carriers. Recently, we have mapped a gene for CFNS in the pericentromeric region of the X chromosome that contains the EFNB1 gene, which encodes the ephrin-B1 ligand for Eph receptors. Since Efnb1 mutant mice display a spectrum of malformations and an unusual inheritance reminiscent of CFNS, we analyzed the EFNB1 gene in three families with CFNS. In one family, a deletion of exons 2-5 was identified in an obligate carrier male, his mildly affected brother, and in the affected females. In the two other families, missense mutations in EFNB1 were detected that lead to amino acid exchanges P54L and T111I. Both mutations are located in multimerization and receptor-interaction motifs found within the ephrin-B1 extracellular domain. In all cases, mutations were found consistently in obligate male carriers, clinically affected males, and affected heterozygous females. We conclude that mutations in EFNB1 cause CFNS.  相似文献   

6.
Luo H  Wu Z  Qi S  Jin W  Han B  Wu J 《The Journal of biological chemistry》2011,286(52):44976-44987
IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors.  相似文献   

7.
EphB2 is a receptor tyrosine kinase of the Eph family and ephrin-B1 is one of its transmembrane ligands. In the embryo, EphB2 and ephrin-B1 participate in neuronal axon guidance, neural crest cell migration, the formation of blood vessels, and the development of facial structures and the inner ear. Interestingly, EphB2 and ephrin-B1 can both signal through their cytoplasmic domains and become tyrosine-phosphorylated when bound to each other. Tyrosine phosphorylation regulates EphB2 signaling and likely also ephrin-B1 signaling. Embryonic retina is a tissue that highly expresses both ephrin-B1 and EphB2. Although the expression patterns of EphB2 and ephrin-B1 in the retina are different, they partially overlap, and both proteins are substantially tyrosine-phosphorylated. To understand the role of ephrin-B1 phosphorylation, we have identified three tyrosines of ephrin-B1 as in vivo phosphorylation sites in transfected 293 cells stimulated with soluble EphB2 by using mass spectrometry and site-directed mutagenesis. These tyrosines are also physiologically phosphorylated in the embryonic retina, although the extent of phosphorylation at each site may differ. Furthermore, many of the tyrosines of EphB2 previously identified as phosphorylation sites in 293 cells (Kalo, M. S., and Pasquale, E. B. (1999) Biochemistry 38, 14396-14408) are also phosphorylated in retinal tissue. Our data underline the complexity of ephrin-Eph bidirectional signaling by implicating many tyrosine phosphorylation sites of the ligand-receptor complex.  相似文献   

8.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.  相似文献   

9.
In vertebrates, hyaluronan biosynthesis is regulated by three transmembrane catalytic enzymes denoted Has1, Has2 and Has3. We have previously cloned the Xenopus orthologues of the corresponding genes and defined their spatiotemporal distribution during development. During mammalian embryogenesis, Has2 activity is known to be crucial, as its abrogation in mice leads to early embryonic lethality. Here, we show that, in Xenopus, morpholino-mediated loss-of-function of XHas2 alters somitogenesis by causing a disruption of the metameric somitic pattern and leads to a defective myogenesis. In the absence of XHas2, early myoblasts underwent apoptosis, failing to complete their muscle differentiation programme. XHas2 activity is also required for migration of hypaxial muscle cells and trunk neural crest cells (NCC). To approach the mechanism whereby loss of HA, following XHas2 knockdown, could influence somitogenesis and precursor cell migration, we cloned the orthologue of the primary HA signalling receptor CD44 and addressed its function through an analogous knockdown approach. Loss of XCD44 did not disturb somitogenesis, but strongly impaired hypaxial muscle precursor cell migration and the subsequent formation of the ventral body wall musculature. In contrast to XHas2, loss of function of XCD44 did not seem to be essential for trunk NCC migration, suggesting that the HA dependence of NCC movement was rather associated with an altered macromolecular composition of the ECM structuring the cells' migratory pathways. The presented results, extend our knowledge on Has2 function and, for the first time, demonstrate a developmental role for CD44 in vertebrates. On the whole, these data underlie and confirm the emerging importance of cell-ECM interactions and modulation during embryonic development.  相似文献   

10.
11.
Peripheral axons from auditory spiral ganglion neurons (SGNs) form an elaborate series of radially and spirally oriented projections that interpret complex aspects of the auditory environment. However, the developmental processes that shape these axon tracts are largely unknown. Radial bundles are comprised of dense SGN fascicles that project through otic mesenchyme to form synapses within the cochlea. Here, we show that radial bundle fasciculation and synapse formation are disrupted when Pou3f4 (DFNX2) is deleted from otic mesenchyme. Further, we demonstrate that Pou3f4 binds to and directly regulates expression of Epha4, Epha4?/? mice present similar SGN defects, and exogenous EphA4 promotes SGN fasciculation in the absence of Pou3f4. Finally, Efnb2 deletion in SGNs leads to similar fasciculation defects, suggesting that ephrin-B2/EphA4 interactions are critical during this process. These results indicate a model whereby Pou3f4 in the otic mesenchyme establishes an Eph/ephrin-mediated fasciculation signal that promotes inner radial bundle formation.  相似文献   

12.
Genetic studies have shown that ephrin-B2 and its cognate EphB4 receptor are necessary for normal embryonic angiogenesis. Moreover, there is overwhelming evidence that ephrin-B2 is involved in tumor vascularization, yet its role in adult angiogenesis has been difficult to track genetically. Here, we report the generation of transgenic mice that over-express EfnB2 specifically in endothelial cells (ECs). We show that exogenous expression of EfnB2 under the control of the Tie2 promoter/enhancer regions in ECs does not affect viability or growth of the transgenic animals. We further show that targeted expression of EfnB2 in ECs is not sufficient to rescue severe cardiovascular defects at mid-gestation stages but rescues early embryonic lethality associated with loss-of-function mutation in EfnB2. This mouse model will be useful to study the role of ephrin-B2 in physiological and pathological angiogenesis.  相似文献   

13.
EphB receptor tyrosine kinases and ephrin-B ligands regulate several types of cell-cell interactions during brain development, generally by modulating the cytoskeleton. EphB/ephrinB genes are expressed in the developing neural tube of early mouse embryos with distinct overlapping expression in the ventral midbrain. To test EphB function in midbrain development, mouse embryos compound homozygous for mutations in the EphB2 and EphB3 receptor genes were examined for early brain phenotypes. These mutants displayed a morphological defect in the ventral midbrain, specifically an expanded ventral midline evident by embryonic day E9.5-10.5, which formed an abnormal protrusion into the cephalic flexure. The affected area was comprised of cells that normally express EphB2 and ephrin-B3. A truncated EphB2 receptor caused a more severe phenotype than a null mutation, implying a dominant negative effect through interference with EphB forward (intracellular) signaling. In mutant embryos, the overall number, size, and identity of the ventral midbrain cells were unaltered. Therefore, the defect in ventral midline morphology in the EphB2;EphB3 compound mutant embryos appears to be caused by cellular changes that thin the tissue, forcing a protrusion of the ventral midline into the cephalic space. Our data suggests a role for EphB signaling in morphological organization of specific regions of the developing neural tube.  相似文献   

14.
Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.  相似文献   

15.
The ephrins are a family of proteins known to bind the Eph (erythropoietin-producing hepatocellular) receptor tyrosine kinase family. In the present paper, we provide data showing that ephrin-B3 binds a sulfated cell-surface protein on HEK-293T (human embryonic kidney-293 cells expressing the large T-antigen of simian virus 40) and HeLa cells, a binding that is nearly completely blocked by treatment of these cell lines with chlorate or heparinase, or by addition of the heavily sulfated glycosaminoglycan heparin. This indicates that heparan sulfate on these cells is essential for cell-surface binding of ephrin-B3. Heparin did not affect ephrin-B3 binding to EphB receptors expressed on transfected HEK-293T cells, indicating further that ephrin-B3 binds an alternative receptor which is a heparan sulfate proteoglycan. Site-directed mutagenesis analysis revealed that Arg178 and Lys179 are important for heparin binding of ephrin-B3 and also for ephrin-B3 binding to cells. These amino acids, when introduced in the non-heparin-binding ephrin-B1, conferred the heparin-binding property. Functional studies reveal that ephrin-B3 binding to cells induces cellular signalling and influences cell rounding and cell spreading. In conclusion, our data provide evidence for an unknown ephrin-B3-binding cell-surface proteoglycan involved in cellular signalling.  相似文献   

16.
A member of the largest family of receptor protein kinases, EphB6, lacks its intrinsic kinase activity, but it is expressed in normal human tissues. To investigate the physiological function of EphB6, we generated EphB6 deficient mice. EphB6(-/-) mice developed normally, revealed no abnormality in general appearance, and were fertile. Although a developmental increase of EphB6 in the fetal thymus was confirmed, T-cell development in various lymphoid organs of EphB6(-/-) mice was comparable to those of EphB6(+/+). Even in fetal thymus organ cultures, any developmental differences of EphB6(-/-) and EphB6(+/+) thymocytes were undetectable. The different binding characteristics to ephrin-Fc proteins between EphB6(-/-) and EphB6(+/+) thymocytes demonstrated that ephrin-B2 is the unique ligand for EphB6 among eight known ephrins. While EphB6 was a dominant receptor that binds to ephrin-B2 in adult thymocytes, fetal ones also expressed another EphB that binds to ephrin-B2. Overlapping expression of the EphB subfamily in the fetal thymus might compensate for the loss of EphB6 during the thymic development.  相似文献   

17.
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.  相似文献   

18.
The p75 neurotrophin receptor (p75NTR) is known to transduce the signal from some myelin-associated axon growth inhibitors, including Nogo and myelin-associated glycoprotein. As ephrin-B3, a member of the ephrin family, is also expressed in myelin and inhibits axon growth, the purpose of this study was to assess the possible involvement of p75NTR in ephrin-B3 signaling. Here, we report that p75NTR is required for the inhibitory effect of ephrin-B3 on neurite growth in vitro. While ephrin-B3 inhibited neurite elongation of embryonic cortical neurons, the neurons with p75NTR knockdown or with EphA4 knockdown were less sensitive to ephrin-B3. Although no direct interaction of p75NTR with ephrin-B3 was observed, Pep5, a peptide that specifically inhibits RhoA activation mediated by p75NTR, reduced the effect of ephrin-B3. Therefore, p75NTR functions as a signal transducer for ephrin-B3. Moreover, axonal regeneration in vivo was induced by Pep5 application after optic nerve crush injury in mice. Thus, Pep5 is a promising agent that contributes to axonal regeneration in the central nervous system.  相似文献   

19.
Neural crest cells (NCCs) are physically responsible for craniofacial skeleton formation, pharyngeal arch artery remodeling and cardiac outflow tract septation during vertebrate development. Cdc42 (cell division cycle 42) is a Rho family small GTP-binding protein that works as a molecular switch to regulate cytoskeleton remodeling and the establishment of cell polarity. To investigate the role of Cdc42 in NCCs during embryonic development, we deleted Cdc42 in NCCs by crossing Cdc42 flox mice with Wnt1-cre mice. We found that the inactivation of Cdc42 in NCCs caused embryonic lethality with craniofacial deformities and cardiovascular developmental defects. Specifically, Cdc42 NCC knockout embryos showed fully penetrant cleft lips and short snouts. Alcian Blue and Alizarin Red staining of the cranium exhibited an unfused nasal capsule and palatine in the mutant embryos. India ink intracardiac injection analysis displayed a spectrum of cardiovascular developmental defects, including persistent truncus arteriosus, hypomorphic pulmonary arteries, interrupted aortic arches, and right-sided aortic arches. To explore the underlying mechanisms of Cdc42 in the formation of the great blood vessels, we generated Wnt1Cre-Cdc42-Rosa26 reporter mice. By beta-galactosidase staining, a subpopulation of Cdc42-null NCCs was observed halting in their migration midway from the pharyngeal arches to the conotruncal cushions. Phalloidin staining revealed dispersed, shorter and disoriented stress fibers in Cdc42-null NCCs. Finally, we demonstrated that the inactivation of Cdc42 in NCCs impaired bone morphogenetic protein 2 (BMP2)-induced NCC cytoskeleton remodeling and migration. In summary, our results demonstrate that Cdc42 plays an essential role in NCC migration, and inactivation of Cdc42 in NCCs impairs craniofacial and cardiovascular development in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号