首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initiation of P22 procapsid assembly in vivo   总被引:7,自引:0,他引:7  
The procapsids of all double-stranded DNA phages have a unique portal vertex, which is the locus of DNA packaging and DNA injection. Procapsid assembly is also initiated at this vertex, which is defined by the presence of a cyclic dodecamer of the portal protein. Assembly of the procapsid shell of phage P22 requires the gene 5 coat protein and the gene 8 scaffolding protein. We report here that removal of gene product (gp) 1 portal protein of P22 by mutation does not slow the rate of polymerization of coat and scaffolding subunits into shells, indicating that the portal ring is dispensable for shell initiation. Mutant scaffolding subunits specified by tsU172 copolymerize with coat subunits into procapsids at restrictive temperature, and also correctly autoregulate their synthesis. However, the shell structures formed from the temperature-sensitive scaffolding subunits fail to incorporate the portal ring and the three minor DNA injection proteins. This mutation identifies a domain of the scaffolding protein specifically involved in organization of the portal vertex. The results suggest that it is a complex of the scaffolding protein that initiates procapsid assembly and organizes the portal ring.  相似文献   

2.
Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat proteins displayed protein folding defects. Individual su substitutions had little effect on phage production in vivo; yet double and triple combinations resulted in a cold-sensitive (cs) phenotype, consistent with a defect in assembly. During virus assembly and maturation, conformational switching of capsid subunits is required when chemically identical capsid subunits form an icosahedron. Analysis of double- and triple-su phage-infected cell lysates by negative-stain electron microscopy reveals an increase in aberrant structures at the cs temperature. In vitro assembly of F170L coat protein causes production of polyheads, never seen before in phage P22. Purified procapsids composed of all of the su coat proteins showed defects in expansion, which mimics maturation in vitro. Our results suggest that a previously identified surface-exposed loop in coat protein is critical in conformational switching of subunits during both procapsid assembly and maturation.  相似文献   

3.
Large-scale conformational transitions are involved in the life-cycle of many types of virus. The dsDNA phages, herpesviruses, and adenoviruses must undergo a maturation transition in the course of DNA packaging to convert a scaffolding-containing precursor capsid to the DNA-containing mature virion. This conformational transition converts the procapsid, which is smaller, rounder, and displays a distinctive skewing of the hexameric capsomeres, to the mature virion, which is larger and more angular, with regular hexons. We have used electron cryomicroscopy and image reconstruction to obtain 15 A structures of both bacteriophage P22 procapsids and mature phage. The maturation transition from the procapsid to the phage results in several changes in both the conformations of the individual coat protein subunits and the interactions between neighboring subunits. The most extensive conformational transformation among these is the outward movement of the trimer clusters present at all strict and local 3-fold axes on the procapsid inner surface. As the trimer tips are the sites of scaffolding binding, this helps to explain the role of scaffolding protein in regulating assembly and maturation. We also observe DNA within the capsid packed in a manner consistent with the spool model. These structures allow us to suggest how the binding interactions of scaffolding and DNA with the coat shell may act to control the packaging of the DNA into the expanding procapsids.  相似文献   

4.
Moore SD  Prevelige PE 《Journal of virology》2002,76(20):10245-10255
Bacteriophage with linear, double-stranded DNA genomes package DNA into preassembled protein shells called procapsids. Located at one vertex in the procapsid is a portal complex composed of a ring of 12 subunits of portal protein. The portal complex serves as a docking site for the DNA packaging enzymes, a conduit for the passage of DNA, and a binding site for the phage tail. An excess of the P22 portal protein alters the assembly pathway of the procapsid, giving rise to defective procapsid-like particles and aberrant heads. In the present study, we report the isolation of escape mutant phage that are able to replicate more efficiently than wild-type phage in the presence of excess portal protein. The escape mutations all mapped to the same phage genome segment spanning the portal, scaffold, coat, and open reading frame 69 genes. The mutations present in five of the escape mutants were determined by DNA sequencing. Interestingly, each mutant contained the same mutation in the scaffold gene, which changes the glycine at position 287 to glutamate. This mutation alone conferred an escape phenotype, and the heads assembled by phage harboring only this mutation had reduced levels of portal protein and exhibited increased head assembly fidelity in the presence of excess portal protein. Because this mutation resides in a region of scaffold protein necessary for coat protein binding, these findings suggest that the P22 scaffold protein may define the portal vertices in an indirect manner, possibly by regulating the fidelity of coat protein polymerization.  相似文献   

5.
Assembly of certain classes of bacterial and animal viruses requires the transient presence of molecules known as scaffolding proteins, which are essential for the assembly of the precursor procapsid. To assemble a procapsid of the proper size, each viral coat subunit must adopt the correct quasiequivalent conformation from several possible choices, depending upon the T number of the capsid. In the absence of scaffolding protein, the viral coat proteins form aberrantly shaped and incorrectly sized capsids that cannot package DNA. Although scaffolding proteins do not form icosahedral cores within procapsids, an icosahedrally ordered coat/scaffolding interaction could explain how scaffolding can cause conformational differences between coat subunits. To identify the interaction sites of scaffolding protein with the bacteriophage P22 coat protein lattice, we have determined electron cryomicroscopy structures of scaffolding-containing and scaffolding-lacking procapsids. The resulting difference maps suggest specific interactions of scaffolding protein with only four of the seven quasiequivalent coat protein conformations in the T = 7 P22 procapsid lattice, supporting the idea that the conformational switching of a coat subunit is regulated by the type of interactions it undergoes with the scaffolding protein. Based on these results, we propose a model for P22 procapsid assembly that involves alternating steps in which first coat, then scaffolding subunits form self-interactions that promote the addition of the other protein. Together, the coat and scaffolding provide overlapping sets of binding interactions that drive the formation of the procapsid.  相似文献   

6.
Assembly of the hundreds of subunits required to form an icosahedral virus must proceed with exquisite fidelity, and is a paradigm for the self-organization of complex macromolecular structures. However, the mechanism for capsid assembly is not completely understood for any virus. Here we have investigated the in vitro assembly of phage P22 procapsids using a quantitative model specifically developed to analyze assembly of spherical viruses. Phage P22 procapsids are the product of the co-assembly of 420 molecules of coat protein and approximately 100-300 molecules of scaffolding protein. Scaffolding protein serves as an assembly chaperone and is not part of the final mature capsid, but is essential for proper procapsid assembly. Here we show that scaffolding protein also affects the thermodynamics of assembly, and for the first time this quantitative analysis has been performed on a virus composed of more than one type of protein subunit. Purified coat and scaffolding proteins were mixed in varying ratios in vitro to form procapsids. The reactions were allowed to reach equilibrium and the proportion of the input protein assembled into procapsids or remaining as free subunits was determined by size exclusion chromatography and SDS-PAGE. The results were used to calculate the free energy contributions for individual coat and scaffolding proteins. Each coat protein subunit was found to contribute -7.2(+/-0.1)kcal/mol and each scaffolding protein -6.1(+/-0.2)kcal/mol to the stability of the procapsid. Because each protein interacts with two or more neighbors, the pair-wise energies are even less. The weak protein interactions observed in the assembly of procapsids are likely important in the control of nucleation, since an increase in affinity between coat and scaffolding proteins can lead to kinetic traps caused by the formation of too many nuclei. In addition, we find that adjusting the molar ratio of scaffolding to coat protein can alter the assembly product. When the scaffolding protein concentration is low relative to coat protein, there is a correspondingly low yield of proper procapsids. When the relative concentration is very high, too many nuclei form, leading to kinetically trapped assembly intermediates.  相似文献   

7.
The herpes simplex virus 1 capsid is formed in the infected cell nucleus by way of a spherical, less robust intermediate called the procapsid. Procapsid assembly requires the capsid shell proteins (VP5, VP19C, and VP23) plus the scaffolding protein, pre-VP22a, a major component of the procapsid that is not present in the mature virion. Pre-VP22a is lost as DNA is packaged and the procapsid is transformed into the mature, icosahedral capsid. We have employed a cell-free assembly system to examine the role of the scaffolding protein in procapsid formation. While other reaction components (VP5, VP19C, and VP23) were held constant, the pre-VP22a concentration was varied, and the resulting procapsids were analyzed by electron microscopy and SDS-polyacrylamide gel electrophoresis. The results demonstrated that while standard-sized (T = 16) procapsids with a measured diameter of approximately 100 nm were formed above a threshold pre-VP22a concentration, at lower concentrations procapsids were smaller. The measured diameter was approximately 78 nm and the predicted triangulation number was 9. No procapsids larger than the standard size or smaller than 78-nm procapsids were observed in appreciable numbers at any pre-VP22a concentration tested. SDS-polyacrylamide gel analyses indicated that small procapsids contained a reduced amount of scaffolding protein compared to the standard 100-nm form. The observations indicate that the scaffolding protein concentration affects the structure of nascent procapsids with a minimum amount required for assembly of procapsids with the standard radius of curvature and scaffolding protein content.  相似文献   

8.
C S Lee  P Guo 《Journal of virology》1995,69(8):5024-5032
The mechanism of viral capsid assembly is an intriguing problem because of its fundamental importance to research on synthetic viral particle vaccines, gene delivery systems, antiviral drugs, chimeric viruses displaying antigens or ligands, and the study of macromolecular interactions. The genes coding for the scaffolding (gp7), capsid (gp8), and portal vertex (gp10) proteins of the procapsid of bacteriophage phi 29 of Bacillus subtilis were expressed in Escherichia coli individually or in combination to study the mechanism of phi 29 procapsid assembly. When expressed alone, gp7 existed as a soluble monomer, gp8 aggregated into inclusion bodies, and gp10 formed the portal vertex. Circular dichroisin spectrum analysis indicated that gp7 is mainly composed of alpha helices. When two of the proteins were coexpressed, gp7 and gp8 assembled into procapsid-like particles with variable sizes and shapes, gp7 and gp10 formed unstable complexes, and gp8 and gp10 did not interact. These results suggested that gp7 served as a bridge for gp8 and gp10. When gp7, gp8, and gp10 were coexpressed, active procapsids were produced. Complementation of extracts containing one or two structural components could not produce active procapsids, indicating that no stable intermediates were formed. A dimeric gp7 concatemer promoted the solubility of gp8 but was inactive in the assembly of procapsid or procapsid-like particles. Mutation at the C terminus of gp7 prevented it from interacting with gp8, indicating that this part of gp7 may be important for interaction with gp8. Coexpression of the portal protein (gp20) of phage T4 with phi 29 gp7 and gp8 revealed the lack of interaction between T4 gp20 and phi 29 gp7 and/or gp8. Perturbing the ratio of the three structural proteins by duplicating one or another gene did not reduce the yield of potentially infectious particles. Changing of the order of gene arrangement in plasmids did not affect the formation of active procapsids significantly. These results indicate that phi 29 procapsid assembly deviated from the single-assembly pathway and that coexistence of all three components with a threshold concentration was required for procapsid assembly. The trimolecular interaction was so rapid that no true intermediates could be isolated. This finding is in accord with the result of capsid assembly obtained by the equilibrium model proposed by A. Zlotnick (J. Mol. Biol. 241:59-67, 1994).  相似文献   

9.
Assembly of bacteriophage P22 procapsids has long served as a model for assembly of spherical viruses. Historically, assembly of viruses has been viewed as a non-equilibrium process. Recently alternative models have been developed that treat spherical virus assembly as an equilibrium process. Here we have investigated whether P22 procapsid assembly reactions achieve equilibrium or are irreversibly trapped. To assemble a procapsid-like particle in vitro, pure coat protein monomers are mixed with scaffolding protein. We show that free subunits can exchange with assembled structures, indicating that assembly is a reversible, equilibrium process. When empty procapsid shells (procapsids with the scaffolding protein stripped out) were diluted so that the concentration was below the dissociation constant ( approximately 5 microM) for coat protein monomers, free monomers were detected. The released monomers were assembly-competent; when NaCl was added to metastable partial capsids that were aged for an extended period, the released coat subunits were able to rapidly re-distribute from the partial capsids and form whole procapsids. Lastly, radioactive monomeric coat subunits were able to exchange with the subunits from empty procapsid shells. The data presented illustrate that coat protein monomers are able to dissociate from procapsids in an active state, that assembly of procapsids is consistent with reactions at equilibrium and that the reaction follows the law of mass action.  相似文献   

10.
The Staphylococcus aureus pathogenicity island SaPI1 carries the gene for the toxic shock syndrome toxin (TSST-1) and can be mobilized by infection with S. aureus helper phage 80α. SaPI1 depends on the helper phage for excision, replication and genome packaging. The SaPI1-transducing particles comprise proteins encoded by the helper phage, but have a smaller capsid commensurate with the smaller size of the SaPI1 genome. Previous studies identified only 80α-encoded proteins in mature SaPI1 virions, implying that the presumptive SaPI1 capsid size determination function(s) must act transiently during capsid assembly or maturation. In this study, 80α and SaPI1 procapsids were produced by induction of phage mutants lacking functional 80α or SaPI1 small terminase subunits. By cryo-electron microscopy, these procapsids were found to have a round shape and an internal scaffolding core. Mass spectrometry was used to identify all 80α-encoded structural proteins in 80α and SaPI1 procapsids, including several that had not previously been found in the mature capsids. In addition, SaPI1 procapsids contained at least one SaPI1-encoded protein that has been implicated genetically in capsid size determination. Mass spectrometry on full-length phage proteins showed that the major capsid protein and the scaffolding protein are N-terminally processed in both 80α and SaPI1 procapsids.  相似文献   

11.
The assembly intermediates of the Salmonella bacteriophage P22 are well defined but the molecular interactions between the subunits that participate in its assembly are not. The first stable intermediate in the assembly of the P22 virion is the procapsid, a preformed protein shell into which the viral genome is packaged. The procapsid consists of an icosahedrally symmetric shell of 415 molecules of coat protein, a dodecameric ring of portal protein at one of the icosahedral vertices through which the DNA enters, and approximately 250 molecules of scaffolding protein in the interior. Scaffolding protein is required for assembly of the procapsid but is not present in the mature virion. In order to define regions of scaffolding protein that contribute to the different aspects of its function, truncation mutants of the scaffolding protein were expressed during infection with scaffolding deficient phage P22, and the products of assembly were analyzed. Scaffolding protein amino acids 1-20 are not essential, since a mutant missing them is able to fully complement scaffolding deficient phage. Mutants lacking 57 N-terminal amino acids support the assembly of DNA containing virion-like particles; however, these particles have at least three differences from wild-type virions: (i) a less than normal complement of the gene 16 protein, which is required for DNA injection from the virion, (ii) a fraction of the truncated scaffolding protein was retained within the virions, and (iii) the encapsidated DNA molecule is shorter than the wild-type genome. Procapsids assembled in the presence of a scaffolding protein mutant consisting of only the C-terminal 75 amino acids contained the portal protein, but procapsids assembled with the C-terminal 66 did not, suggesting portal recruitment function for the region about 75 amino acids from the C terminus. Finally, scaffolding protein amino acids 280 through 294 constitute its minimal coat protein binding site.  相似文献   

12.
The procapsid of the Bacillus subtilis bacteriophage SPP1 is formed by the major capsid protein gp13, the scaffolding protein gp11, the portal protein gp6, and the accessory protein gp7. The protein stoichiometry suggests a T=7 symmetry for the SPP1 procapsid. Overexpression of SPP1 procapsid proteins in Escherichia coli leads to formation of biologically active procapsids, procapsid-like, and aberrant structures. Co-production of gp11, gp13 and gp6 is essential for assembly of procapsids competent for DNA packaging in vitro. Presence of gp7 in the procapsid increases the yield of viable phages assembled during the reaction in vitro five- to tenfold. Formation of closed procapsid-like structures requires uniquely the presence of the major head protein and the scaffolding protein. The two proteins interact only when co-produced but not when mixed in vitro after separate synthesis. Gp11 controls the polymerization of gp13 into normal (T=7) and small sized (T=4?) procapsids. Predominant formation of T=7 procapsids requires presence of the portal protein. This implies that the portal protein has to be integrated at an initial stage of the capsid assembly process. Its presence, however, does not have a detectable effect on the rate of procapsid assembly during SPP1 infection. A stable interaction between gp6 and the two major procapsid proteins was only detected when the three proteins are co-produced. Efficient incorporation of a single portal protein in the procapsid appears to require a structural context created by gp11 and gp13 early during assembly, rather than strong interactions with any of those proteins. Gp7, which binds directly to gp6 both in vivo and in vitro, is not necessary for incorporation of the portal protein in the procapsid structure.  相似文献   

13.
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.  相似文献   

14.
The complex double-stranded DNA bacteriophages assemble DNA-free protein shells (procapsids) that subsequently package DNA. In the case of several double-stranded DNA bacteriophages, including P22, packaging is associated with cutting of DNA from the concatemeric molecule that results from replication. The mature intravirion P22 DNA has both non-unique (circularly permuted) ends and a length that is determined by the procapsid. In all known cases, procapsids consist of an outer coat protein, an interior scaffolding protein that assists in the assembly of the coat protein shell, and a ring of 12 identical portal protein subunits through which the DNA is presumed to enter the procapsid. To investigate the role of the portal protein in cutting permuted DNA from concatemers, we have characterized P22 portal protein mutants. The effects of several single amino acid changes in the P22 portal protein on the length of the DNA packaged, the density to which DNA is condensed within the virion, and the outer radius of the capsid have been determined. The results obtained with one mutant (NT5/1a) indicate no change (+/- 0.5%) in the radius of the capsid, but mature DNA that is 4.7% longer and a packing density that is commensurately higher than those of wild-type P22. Thus, the portal protein is part of the gauge that regulates the length and packaging density of DNA in bacteriophage P22. We argue that these findings make models for DNA packaging less likely in which the packing density is a property solely of the coat protein shell or of the DNA itself.  相似文献   

15.
In the morphogenesis of double stranded DNA phages, a precursor protein shell empty of DNA is first assembled and then filled with DNA. The assembly of the correctly dimensioned precursor shell (procapsid) of Salmonella bacteriophage P22 requires the interaction of some 420 coat protein subunits with approximately 200 scaffolding protein subunits to form a double shelled particle with the scaffolding protein on the inside. In the course of DNA packaging, all of the scaffolding protein subunits exit from the procapsid and participate in further rounds of procapsid assembly (King and Casjens. 1974. Nature (Lond.). 251:112-119). To study the mechanism of shell assembly we have purified the coat and scaffolding protein subunits by selective dissociation of isolated procapsids. Both proteins can be obtained as soluble subunits in Tris buffer at near neutral pH. The coat protein sedimented in sucrose gradients as a roughly spherical monomer, while the scaffolding protein sedimented as if it were an elongated monomer. When the two proteins were mixed together in 1.5 M guanidine hydrochloride and dialyzed back to buffer at room temperature, procapsids formed which were very similar in morphology, sedimentation behavior, and protein composition to procapsids formed in vivo. Incubation of either protein alone under the same conditions did not yield any large structures. We interpret these results to mean that the assembly of the shell involves a switching of both proteins from their nonaggregating to their aggregating forms through their mutual interaction. The results are discussed in terms of the general problem of self-regulated assembly and the control of protein polymerization in morphogenesis.  相似文献   

16.
P E Prevelige  Jr  D Thomas    J King 《Biophysical journal》1993,64(3):824-835
The polymerization of protein subunits into precursor shells empty of DNA is a critical process in the assembly of double-stranded DNA viruses. For the well-characterized icosahedral procapsid of phage P22, coat and scaffolding protein subunits do not assemble separately but, upon mixing, copolymerize into double-shelled procapsids in vitro. The polymerization reaction displays the characteristics of a nucleation limited reaction: a paucity of intermediate assembly states, a critical concentration, and kinetics displaying a lag phase. Partially formed shell intermediates were directly visualized during the growth phase by electron microscopy of the reaction mixture. The morphology of these intermediates suggests that assembly is a highly directed process. The initial rate of this reaction depends on the fifth power of the coat subunit concentration and the second or third power of the scaffolding concentration, suggesting that pentamer of coat protein and dimers or trimers of scaffolding protein, respectively, participate in the rate-limiting step.  相似文献   

17.
Coat and scaffolding subunits derived from P22 procapsids have been purified in forms that co-assemble rapidly and efficiently into icosahedral shells in vitro under native conditions. The half-time for this reaction is approximately five minutes at 21 degrees C. The in vitro reaction exhibits the regulated features observed in vivo. Neither coat nor scaffolding subunits alone self-assemble into large structures. Upon mixing the subunits together they polymerize into procapsid-like shells with the in vivo coat and scaffolding protein composition. The subunits in the purified coat protein preparations are monomeric. The scaffolding subunits appear to be monomeric or dimeric. These results confirm that P22 procapsid formation does not proceed through the assembly of a core of scaffolding, which then organizes the coat, but requires copolymerization of coat and scaffolding. To explore the mechanisms of the control of polymerization, shell assembly was examined as a function of the input ratio of scaffolding to coat subunits. The results indicated that scaffolding protein was required for both initiation of shell assembly and continued polymerization. Though procapsids produced in vivo contain about 300 molecules of scaffolding, shells with fewer subunits could be assembled down to a lower limit of about 140 scaffolding subunits per shell. The overall results of these experiments indicate that coat and scaffolding subunits must interact in both the initiation and the growth phases of shell assembly. However, it remains unclear whether during growth the coat and scaffolding subunits form a mixed oligomer prior to adding to the shell or whether this occurs at the growing edge.  相似文献   

18.
The Salmonella typhimurium bacteriophage P22 assembles an icosahedral capsid precursor called a procapsid. The oligomeric portal protein ring, located at one vertex, comprises the conduit for DNA entry and exit. In conjunction with the DNA packaging enzymes, the portal ring is an integral component of a nanoscale machine that pumps DNA into the phage head. Although the portal vertex is assembled with high fidelity, the mechanism by which a single portal complex is incorporated during procapsid assembly remains unknown. The assembly of bacteriophage P22 portal rings has been characterized in vitro using a recombinant, His-tagged protein. Although the portal protein remained primarily unassembled within the cell, once purified, the highly soluble monomer assembled into rings at room temperature at high concentrations with a half time of approximately 1 h. Circular dichroic analysis of the monomers and rings indicated that the protein gained alpha-helicity upon polymerization. Thermal denaturation studies suggested that the rings contained an ordered domain that was not present in the unassembled monomer. A combination of 4,4'-dianilino-1,1'-binapthyl-5,5'-disulfonic acid (bis-ANS) binding fluorescence studies and limited proteolysis revealed that the N-terminal portion of the unassembled subunit is meta-stable and is susceptible to structural perturbation by bis-ANS. In conjunction with previously obtained data on the behavior of the P22 portal protein, we propose an assembly model for P22 portal rings that involves a meta-stable monomeric subunit.  相似文献   

19.
The coat and scaffolding proteins of bacteriophage P22 procapsids have been purified in soluble form. By incubating both purified proteins with a mutant-infected cell extract lacking procapsids, but competent for DNA packaging in vitro (Poteete et al., 1979), we were able to obtain assembly of biologically active procapsids in vitro. The active species for complementation in vitro in both protein preparations copurified with the soluble subunits, indicating that these subunits represent precursors in procapsid polymerization.When the purified coat and scaffolding subunits were mixed directly, they polymerized into double-shelled procapsid-like structures during dialysis from 1.5 m-guanidine hydrochloride to buffer. When dialyzed separately under the same conditions, the scaffolding subunits did not polymerize but remained as soluble subunits, as did most of the coat subunits. No evidence was found for self-assembly of the scaffolding protein in the absence of the coat protein.The unassembled coat subunits sedimented at 3.9 S and the unassembled scaffolding subunits sedimented at 2.4 S in sucrose gradients. The Stokes' radius, determined by gel filtration, was 25 Å for the coat subunits and 34 Å for the scaffolding subunits. These results indicate that the scaffolding subunits are relatively slender elongated molecules, whereas the coat subunits are more globular.The experiments suggest that the procapsid is built by copolymerization of the two protein species. Their interaction on the growing surface of the shell structure, and not in solution, appears to regulate successive binding interactions.  相似文献   

20.
Icosahedral-tailed double-stranded DNA (dsDNA) bacteriophages and herpesviruses translocate viral DNA into a preformed procapsid in an ATP-driven reaction by a packaging complex that operates at a portal vertex. A similar packaging system operates in the tailless dsDNA phage PRD1 (Tectiviridae family), except that there is an internal membrane vesicle in the procapsid. The unit-length linear dsDNA genome with covalently linked 5′-terminal proteins enters the procapsid through a unique vertex. Two small integral membrane proteins, P20 and P22, provide a conduit for DNA translocation. The packaging machinery also contains the packaging ATPase P9 and the packaging efficiency factor P6. Here we describe a method used to obtain purified packaging-competent PRD1 procapsids. The optimized in vitro packaging system allowed efficient packaging of defined DNA substrates. We determined that the genome terminal protein P8 is necessary for packaging and provided an estimation of the packaging rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号