首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U(6)A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U(6)A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.  相似文献   

2.
Cao S  Chen SJ 《Physical biology》2008,5(1):016002
Many retroviruses use -1 ribosomal frameshifting as part of the mechanism in translational control of viral protein synthesis. Quantitative prediction of the efficiency of -1 frameshifting is crucial for understanding the viral gene expression. Here we investigate the free energy landscape for a minimal -1 programmed ribosomal frameshifting machinery, including the codon-anticodon base pairs at the slippery site, the downstream messenger RNA structure and the spacer between the slippery site and the downstream structure. The free energy landscape analysis leads to a quantitative relationship between the frameshifting efficiency and the tension force generated during the movement of codon-anticodon complexes, which may occur in the A/T to A/A accommodation process or the translocation process. The analysis shows no consistent correlation between frameshifting efficiency and global stability of the downstream mRNA structure.  相似文献   

3.
Reading two bases twice: mammalian antizyme frameshifting in yeast.   总被引:9,自引:1,他引:8       下载免费PDF全文
Programmed translational frameshifting is essential for the expression of mammalian ornithine decarboxylase antizyme, a protein involved in the regulation of intracellular polyamines. A cassette containing antizyme frameshift signals is found to direct high-level (16%) frameshifting in yeast, Saccharomyces cerevisiae. In contrast to +1 frameshifting in the mammalian system, in yeast the same frame is reached by -2 frameshifting. Two bases are read twice. The -2 frameshifting is likely to be mediated by slippage of mRNA and re-pairing with the tRNA in the P-site. The downstream pseudoknot stimulates frameshifting by 30-fold compared with 2.5-fold in reticulocyte lysates. When the length of the spacer between the shift site and the pseudoknot is extended by three nucleotides, +1 and -2 frameshifting become equal.  相似文献   

4.
Synthesis of the Gag-Pol protein of the human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshifting when ribosomes translate the unspliced viral messenger RNA. This frameshift occurs at a slippery sequence followed by an RNA structure motif that stimulates frameshifting. This motif is commonly assumed to be a simple stem-loop for HIV-1. In this study, we show that the frameshift stimulatory signal is more complex than believed and consists of a two-stem helix. The upper stem-loop corresponds to the classic stem-loop, and the lower stem is formed by pairing the spacer region following the slippery sequence and preceding this classic stem-loop with a segment downstream of this stem-loop. A three-purine bulge interrupts the two stems. This structure was suggested by enzymatic probing with nuclease V1 of an RNA fragment corresponding to the gag/pol frameshift region of HIV-1. The involvement of the novel lower stem in frameshifting was supported by site-directed mutagenesis. A fragment encompassing the gag/pol frameshift region of HIV-1 was inserted in the beginning of the coding sequence of a reporter gene coding for the firefly luciferase, such that expression of luciferase requires a -1 frameshift. When the reporter was expressed in COS cells, mutations that disrupt the capacity to form the lower stem reduced frameshifting, whereas compensatory changes that allow re-formation of this stem restored the frameshift efficiency near wild-type level. The two-stem structure that we propose for the frameshift stimulatory signal of HIV-1 differs from the RNA triple helix structure recently proposed.  相似文献   

5.
Translational frameshifting, a ubiquitous mechanism used to produce alternative proteins for different biological purposes, appears in a variety of genes in probably all organisms. In the past, the combinational use of sophisticated expression vectors, specific endopeptidases, and Edman degradation has been the main approach for identification of the translational frameshift sites. Although Edman degradation is highly reliable, it is also time-consuming and costly. In this article, we report a new liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach for identifying the -1 translational frameshift sites. The approach consists of three steps: (i) LC-MS/MS analysis of the protein digests, (ii) primary data analysis using the known mRNA sequence, and (iii) advanced data analysis using a new database containing distinct mRNA sequences with single insertion at particular positions. We first validated our approach by analyzing the previously documented slippery sequence, A4G, from IS3. With this approach, we further determined whether the TTTTTTG (T6G) sequence of IS1372 from Streptomyces lividans had the -1 translational frameshifting potential. The identified amino acid sequence of the transframe peptide indicated that the -1 frameshifting occurred at the T6G motif, as predicted previously. The results on IS3 (A4G) and IS1372 (T6G) suggested that this approach is effective for the translational frameshifting studies.  相似文献   

6.
Kim YG  Maas S  Rich A 《Nucleic acids research》2001,29(5):1125-1131
Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gagpol and HTLV-2 gagpro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.  相似文献   

7.
Many viruses regulate translation of polycistronic mRNA using a −1 ribosomal frameshift induced by an RNA pseudoknot. When the ribosome encounters the pseudoknot barrier that resists unraveling, transient mRNA–tRNA dissociation at the decoding site, results in a shift of the reading frame. The eukaryotic frameshifting pseudoknot from the beet western yellow virus (BWYV) has been well characterized, both structurally and functionally. Here, we show that in order to obtain eukaryotic levels of frameshifting efficiencies using prokaryotic Escherichia coli ribosomes, which depend upon the structural integrity of the BWYV pseudoknot, it is necessary to shorten the mRNA spacer between the slippery sequence and the pseudoknot by 1 or 2 nucleotides (nt). Shortening of the spacer is likely to re-establish tension and/or ribosomal contacts that were otherwise lost with the smaller E. coli ribosomes. Chemical probing experiments for frameshifting and nonframeshifting BWYV constructs were performed to investigate the structural integrity of the pseudoknot confined locally at the mRNA entry site. These data, obtained in the pretranslocation state, show a compact overall pseudoknot structure, with changes in the conformation of nucleotides (i.e., increase in reactivity to chemical probes) that are first “hit” by the ribosomal helicase center. Interestingly, with the 1-nt shortened spacer, this increase of reactivity extends to a downstream nucleotide in the first base pair (bp) of stem 1, consistent with melting of this base pair. Thus, the 3 bp that will unfold upon translocation are different in both constructs with likely consequences on unfolding kinetics.  相似文献   

8.
The standard rules of genetic translational decoding are altered in specific genes by different events that are globally termed recoding. In Archaea recoding has been unequivocally determined so far only for termination codon readthrough events. We study here the mechanism of expression of a gene encoding for a alpha-l-fucosidase from the archaeon Sulfolobus solfataricus (fucA1), which is split in two open reading frames separated by a -1 frameshifting. The expression in Escherichia coli of the wild-type split gene led to the production by frameshifting of full-length polypeptides with an efficiency of 5%. Mutations in the regulatory site where the shift takes place demonstrate that the expression in vivo occurs in a programmed way. Further, we identify a full-length product of fucA1 in S.solfataricus extracts, which translate this gene in vitro by following programmed -1 frameshifting. This is the first experimental demonstration that this kind of recoding is present in Archaea.  相似文献   

9.
In many viruses, -1 ribosomal frameshifting (-1RF) regulates synthesis of proteins and is crucial for virus production. An RNA pseudoknot is one of the essential components of the viral -1RF system. Thermodynamic or kinetic control of pseudoknot folding may be important in regulating the efficiency of -1RF. Thus, small molecules that interact with viral RNA pseudoknots may disrupt the -1RF system and show antiviral activity. In this study, we conducted virtual screening of a chemical database targeting the X-ray crystal structure of RNA pseudoknot complexed with biotin to identify ligands that may regulate an -1RF system containing biotin-aptamer as an RNA pseudoknot component. After docking screening of about 80,000 compounds, 58 high-ranked hits were selected and their activities were examined by in vitro and cell-based -1 frameshifting assays. Six compounds increased the efficiency of -1 frameshifting, and these are novel small molecule compounds that regulate the -1RF.  相似文献   

10.
It has been suggested that Escherichia coli release factor 2 (RF-2) translation is autoregulated. Mature RF-2 protein can terminate its own nascent synthesis at an intragenic, in-phase UGA codon, or alternatively, a +1 frameshift can occur that leads to completion of the RF-2 polypeptide. Translational termination presumably increases with RF-2 concentration, providing negative regulatory feedback. We now show, in lacZ/RF-2 fusions, that translation of a UAG codon at the position of the UGA competes with frameshifting, which proves one postulate of the translational autoregulatory model. We also identify a nearby sequence that is required for high-frequency frameshifting and suggest a constraint for the codon preceding the shift point. Both these sequences are incorporated into a model for frameshifting. Our measurements allow us to compute the relative rates in vivo of these reactions: release factor action, frameshifting and tRNA selection at an amber codon.  相似文献   

11.
Polyamines are essential organic cations with multiple cellular functions. Their synthesis is controlled by a feedback regulation whose main target is ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. In mammals, ODC has been shown to be inhibited and targeted for ubiquitin-independent degradation by ODC antizyme (AZ). The synthesis of mammalian AZ was reported to involve a polyamine-induced ribosomal frameshifting mechanism. High levels of polyamine therefore inhibit new synthesis of polyamines by inducing ODC degradation. We identified a previously unrecognized sequence in the genome of Saccharomyces cerevisiae encoding an orthologue of mammalian AZ. We show that synthesis of yeast AZ (Oaz1) involves polyamine-regulated frameshifting as well. Degradation of yeast ODC by the proteasome depends on Oaz1. Using this novel model system for polyamine regulation, we discovered another level of its control. Oaz1 itself is subject to ubiquitin-mediated proteolysis by the proteasome. Degradation of Oaz1, however, is inhibited by polyamines. We propose a model, in which polyamines inhibit their ODC-mediated biosynthesis by two mechanisms, the control of Oaz1 synthesis and inhibition of its degradation.  相似文献   

12.
Chen C  Montelaro RC 《Journal of virology》2003,77(19):10280-10287
Synthesis of Gag-Pol polyproteins of retroviruses requires ribosomes to shift translational reading frame once or twice in a -1 direction to read through the stop codon in the gag reading frame. It is generally believed that a slippery sequence and a downstream RNA structure are required for the programmed -1 ribosomal frameshifting. However, the mechanism regulating the Gag-Pol frameshifting remains poorly understood. In this report, we have defined specific mRNA elements required for sufficient ribosomal frameshifting in equine anemia infectious virus (EIAV) by using full-length provirus replication and Gag/Gag-Pol expression systems. The results of these studies revealed that frameshifting efficiency and viral replication were dependent on a characteristic slippery sequence, a five-base-paired GC stretch, and a pseudoknot structure. Heterologous slippery sequences from human immunodeficiency virus type 1 and visna virus were able to substitute for the EIAV slippery sequence in supporting EIAV replication. Disruption of the GC-paired stretch abolished the frameshifting required for viral replication, and disruption of the pseudoknot reduced the frameshifting efficiency by 60%. Our data indicated that maintenance of the essential RNA signals (slippery sequences and structural elements) in this region of the genomic mRNA was critical for sufficient ribosomal frameshifting and EIAV replication, while concomitant alterations in the amino acids translated from the same region of the mRNA could be tolerated during replication. The data further indicated that proviral mutations that reduced frameshifting efficiency by as much as 50% continued to sustain viral replication and that greater reductions in frameshifting efficiency lead to replication defects. These studies define for the first time the RNA sequence and structural determinants of Gag-Pol frameshifting necessary for EIAV replication, reveal novel aspects relative to frameshifting elements described for other retroviruses, and provide new genetic determinants that can be evaluated as potential antiviral targets.  相似文献   

13.
Errors occur randomly and at low frequency during the translation of mRNA. However, such errors may also be programmed by the sequence and structure of the mRNA. These programmed events are called 'recoding' and are found mostly in viruses, in which they are usually essential for viral replication. Translational errors at a stop codon may also be induced by drugs, raising the possibility of developing new treatment protocols for genetic diseases on the basis of nonsense mutations. Many studies have been carried out, but the molecular mechanisms governing these events remain largely unknown. Studies on the yeast Saccharomyces cerevisiae have contributed to characterization of the HIV-1 frameshifting site and have demonstrated that frameshifting is conserved from yeast to humans. Yeast has also proved a particularly useful model organism for deciphering the mechanisms of translation termination in eukaryotes and identifying the factors required to obtain a high level of natural suppression. These findings open up new possibilities for large-scale screening in yeast to identify new drugs for blocking HIV replication by inhibiting frameshifting or restoring production of the full-length protein from a gene inactivated by a premature termination codon. We explore these two aspects of the contribution of yeast studies to human medicine in this review.  相似文献   

14.
The full-length human immunodeficiency virus type 1 (HIV-1) mRNA encodes two precursor polyproteins, Gag and GagProPol. An infrequent ribosomal frameshifting event allows these proteins to be synthesized from the same mRNA in a predetermined ratio of 20 Gag proteins for each GagProPol. The RNA frameshift signal consists of a slippery sequence and a hairpin stem-loop whose thermodynamic stability has been shown in in vitro translation systems to be critical to frameshifting efficiency. In this study we examined the frameshift region of HIV-1, investigating the effects of altering stem-loop stability in the context of the complete viral genome and assessing the role of the Gag spacer peptide p1 and the GagProPol transframe (TF) protein that are encoded in this region. By creating a series of frameshift region mutants that systematically altered the stability of the frameshift stem-loop and the protein sequences of the p1 spacer peptide and TF protein, we have demonstrated the importance of stem-loop thermodynamic stability in frameshifting efficiency and viral infectivity. Multiple changes to the amino acid sequence of p1 resulted in altered protein processing, reduced genomic RNA dimer stability, and abolished viral infectivity. The role of the two highly conserved proline residues in p1 (position 7 and 13) was also investigated. Replacement of the two proline residues by leucines resulted in mutants with altered protein processing and reduced genomic RNA dimer stability that were also noninfectious. The unique ability of proline to confer conformational constraints on a peptide suggests that the correct folding of p1 may be important for viral function.  相似文献   

15.
The ribosomal frameshift signal in the genomic RNA of the coronavirus IBV is composed of two elements, a heptanucleotide "slippery-sequence" and a downstream RNA pseudoknot. We have investigated the kinds of slippery sequence that can function at the IBV frameshift site by analysing the frameshifting properties of a series of slippery-sequence mutants. We firstly confirmed that the site of frameshifting in IBV was at the heptanucleotide stretch UUUAAAC, and then used our knowledge of the pseudoknot structure and a suitable reporter gene to prepare an expression construct that allowed both the magnitude and direction of ribosomal frameshifting to be determined for candidate slippery sequences. Our results show that in almost all of the sequences tested, frameshifting is strictly into the -1 reading frame. Monotonous runs of nucleotides, however, gave detectable levels of a -2/+1 frameshift product, and U stretches in particular gave significant levels (2% to 21%). Preliminary evidence suggests that the RNA pseudoknot may play a role in influencing frameshift direction. The spectrum of slip-sequences tested in this analysis included all those known or suspected to be utilized in vivo. Our results indicate that triplets of A, C, G and U are functional when decoded in the ribosomal P-site following slippage (XXXYYYN) although C triplets were the least effective. In the A-site (XXYYYYN), triplets of C and G were non-functional. The identity of the nucleotide at position 7 of the slippery sequence (XXXYYYN) was found to be a critical determinant of frameshift efficiency and we show that a hierarchy of frameshifting exists for A-site codons. These observations lead us to suggest that ribosomal frameshifting at a particular site is determined, at least in part, by the strength of the interaction of normal cellular tRNAs with the A-site codon and does not necessarily involve specialized "shifty" tRNAs.  相似文献   

16.
The Mof2/Sui1 Protein Is a General Monitor of Translational Accuracy   总被引:10,自引:3,他引:7       下载免费PDF全文
Although it is essential for protein synthesis to be highly accurate, a number of cases of directed ribosomal frameshifting have been reported in RNA viruses, as well as in procaryotic and eucaryotic genes. Changes in the efficiency of ribosomal frameshifting can have major effects on the ability of cells to propagate viruses which use this mechanism. Furthermore, studies of this process can illuminate the mechanisms involved in the maintenance of the normal translation reading frame. The yeast Saccharomyces cerevisiae killer virus system uses programmed −1 ribosomal frameshifting to synthesize its gene products. Strains harboring the mof2-1 allele demonstrated a fivefold increase in frameshifting and prevented killer virus propagation. In this report, we present the results of the cloning and characterization of the wild-type MOF2 gene. mof2-1 is a novel allele of SUI1, a gene previously shown to play a role in translation initiation start site selection. Strains harboring the mof2-1 allele demonstrated a mutant start site selection phenotype and increased efficiency of programmed −1 ribosomal frameshifting and conferred paromomycin sensitivity. The increased frameshifting observed in vivo was reproduced in extracts prepared from mof2-1 cells. Addition of purified wild-type Mof2p/Sui1p reduced frameshifting efficiencies to wild-type levels. Expression of the human SUI1 homolog in yeast corrects all of the mof2-1 phenotypes, demonstrating that the function of this protein is conserved throughout evolution. Taken together, these results suggest that Mof2p/Sui1p functions as a general modulator of accuracy at both the initiation and elongation phases of translation.  相似文献   

17.
Programmed ‘-1’ ribosomal frameshifting is necessary for expressing the pol gene overlapped from a gag of human immunodeficiency virus. A viral RNA structure that requires base pairing across the overlapping sequence region suggests a mechanism of regulating ribosome and helicase traffic during expression. To get precise roles of an element around the frameshift site, a review on architecture of the frameshifting RNA is performed in combination of reported information with augments of a representative set of 19 viral samples. In spite of a different length for the viral RNAs, a canonical comparison on the element sequence allocation is performed for viewing variability associations between virus genotypes. Additionally, recent and historical insights recognized in frameshifting regulation are looked back as for indel and single nucleotide polymorphism of RNA. As specially noted, structural changes at a frameshift site, the spacer sequence, and a three-helix junction element, as well as two Watson–Crick base pairs near a bulge and a C–G pair close a loop, are the most vital strategies for the virus frameshifting regulations. All of structural changes, which are dependent upon specific sequence variations, facilitate an elucidation about the RNA element conformation-dependent mechanism for frameshifting. These facts on disrupting base pair interactions also allow solving the problem of competition between ribosome and helicase on a same RNA template, common to single-stranded RNA viruses. In a broad perspective, each new insight of frameshifting regulation in the competition systems introduced by the RNA element construct changes will offer a compelling target for antiviral therapy.  相似文献   

18.
Mutational and NMR methods were used to investigate features of sequence, structure, and dynamics that are associated with the ability of a pseudoknot to stimulate a -1 frameshift. In vitro frameshift assays were performed on retroviral gag-pro frameshift-stimulating pseudoknots and their derivatives, a pseudoknot from the gene 32 mRNA of bacteriophage T2 that is not naturally associated with frameshifting, and hybrids of these pseudoknots. Results show that the gag-pro pseudoknot from human endogenous retrovirus-K10 (HERV) stimulates a -1 frameshift with an efficiency similar to that of the closely related retrovirus MMTV. The bacteriophage T2 mRNA pseudoknot was found to be a poor stimulator of frameshifting, supporting a hypothesis that the retroviral pseudoknots have distinctive properties that make them efficient frameshift stimulators. A hybrid, designed by combining features of the bacteriophage and retroviral pseudoknots, was found to stimulate frameshifting while retaining significant structural similarity to the nonframeshifting bacteriophage pseudoknot. Mutational analyses of the retroviral and hybrid pseudoknots were used to evaluate the effects of an unpaired (wedged) adenosine at the junction of the pseudoknot stems, changing the base pairs near the junction of the two stems, and changing the identity of the loop 2 nucleotide nearest the junction of the stems. Pseudoknots both with and without the wedged adenosine can stimulate frameshifting, though the identities of the nucleotides near the stem1/stem2 junction do influence efficiency. NMR data showed that the bacteriophage and hybrid pseudoknots are similar in their local structure at the junction of the stems, indicating that pseudoknots that are similar in this structural feature can differ radically in their ability to stimulate frameshifting. NMR methods were used to compare the internal motions of the bacteriophage T2 pseudoknot and representative frameshifting pseudoknots. The stems of the investigated pseudoknots are similarly well ordered on the time scales to which nitrogen-15 relaxation data are sensitive; however, solvent exchange rates for protons at the junction of the two stems of the nonframeshifting bacteriophage pseudoknot are significantly slower than the analogous protons in the representative frameshifting pseudoknots.  相似文献   

19.
Translational frameshifting is a ubiquitous, if rare, form of alternative decoding in which ribosomes spontaneously shift reading frames during translation elongation. In studying +1 frameshifting in Ty retrotransposons of the yeast S. cerevisiae, we previously showed that unusual P site tRNAs induce frameshifting. The frameshift-inducing tRNAs we show here are near-cognates for the P site codon. Their abnormal decoding induces frameshifting in either of two ways: weak codon-anticodon pairing allows the tRNA to disengage from the mRNA and slip +1, or an unusual codon-anticodon structure interferes with cognate in-frame decoding allowing out-of-frame decoding in the A site. We draw parallels between this mechanism and a proposed mechanism of frameshift suppression by mutant tRNAs.  相似文献   

20.
Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号