首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Paracoccidioides brasiliensis is a well-characterized pathogen of humans. To identify proteins involved in the fungus-host interaction, P. brasiliensis yeast proteins were separated by liquid isoelectric focusing, and fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. Immunoreactive bands were detected with pooled sera of patients with P. brasiliensis infection. A protein species with a molecular mass of 45 kDa was subsequently purified to homogeneity by preparative gel electrophoresis. The amino acid sequence of four endoproteinase Lys-C-digested peptides indicated that the protein was a formamidase (FMD) (E.C. 3.5.1.49) of P. brasiliensis. The complete cDNA and a genomic clone (Pbfmd) encoding the isolated FMD were isolated. An open reading frame predicted a 415-amino acid protein. The sequence contained each of the peptide sequences obtained from amino acid sequencing. The Pbfmd gene contained five exons interrupted by four introns. Northern and Southern blot analysis suggested that there is one copy of the gene in P. brasiliensis and that it is preferentially expressed in mycelium. The complete coding cDNA was expressed in Escherichia coli to produce a recombinant fusion protein with glutathione S-transferase (GST). The purified recombinant protein was recognized by sera of patients with proven paracoccidioidomycosis and not by sera of healthy individuals. The recombinant 45-kDa protein was shown to be catalytically active; FMD activity was detected in P. brasiliensis yeast and mycelium.  相似文献   

2.
3.
The bioemulsifier of Acinetobacter radioresistens KA53, referred to as alasan, is a high-molecular-weight complex of polysaccharide and protein. Recently, one of the alasan proteins, with an apparent molecular mass of 45 kDa, was purified and shown to constitute most of the emulsifying activity. The N-terminal sequence of the 45-kDa protein showed high homology to an OmpA-like protein from Acinetobacter spp. In the research described here the gene coding for the 45-kDa protein was cloned, sequenced, and expressed in Escherichia coli. Recombinant protein AlnA (35.77 kDa without the leader sequence) had an amino acid sequence homologous to that of E. coli OmpA and contained 70% of the specific (hydrocarbon-in-water) emulsifying activity of the native 45-kDa protein and 2.4 times that of the alasan complex. In addition to their emulsifying activity, both the native 45-kDa protein and the recombinant AlnA were highly effective in solubilizing phenanthrene, ca. 80 microg per mg of protein, corresponding to 15 to 19 molecules of phenanthrene per molecule of protein. E. coli OmpA had no significant emulsifying or phenanthrene-solubilizing activity. The production of a recombinant surface-active protein (emulsification and solubilization of hydrocarbons in water) from a defined gene makes possible for the first time structure-function studies of a bioemulsan.  相似文献   

4.
Thymidine kinase is an enzyme involved in DNA precursor metabolism and DNA replication. The synthesis of this enzyme is highly regulated during the cell cycle and the activity of the enzyme is also regulated by feedback inhibition. Genes encoding thymidine kinase have been extremely useful as selectable markers for introducing DNA into a number of cells. In order to study cell cycle regulation of thymidine kinase, the gene which encodes this enzyme, as well as aspects of DNA replication in the ciliated protozoan Tetrahymena thermophila, we have purified thymidine kinase from Tetrahymena. Two forms of thymidine kinase with native molecular masses of 59 kDa and 80 kDa have been identified and purified 6800- and 4600-fold, respectively. The 59-kDa enzyme, a homodimer of 30-kDa subunits, has been purified to near homogeneity and polyclonal antibodies have been raised against the 30-kDa subunit. Serological studies indicate that the two enzymes are antigenically distinct. The antibody against the Tetrahymena protein cross-reacts with a polypeptide in Chinese hamster ovary (CHO) cell extracts of 26 kDa which corresponds to the reported size of Chinese hamster thymidine kinase protein.  相似文献   

5.
Previous studies have demonstrated that fungal pathogens of cyanogenic plants produce cyanide hydratase (CHT, EC 4.2.1.66), which converts HCN to formamide. Production of CHT in these fungi is thought to be a means of circumventing cyanide toxicity, and CHT is thus believed to be an important pathogenicity trait. In the present study, 13 species of fungi were assayed for CHT production, and all 7 species that were pathogens of sorghum, a cyanogenic plant, produced this enzyme. CHT was purified to apparent homogeneity from one of these sorghum pathogens, Gloeocercospora sorghi. The enzyme had a Km of 12 mM for KCN. Enzymatically functional CHT was obtained only as a large molecular entity of greater than 300 kDa. However, a polypeptide of approximately 45 kDa was identified as the only component of purified CHT detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 45-kDa polypeptide band could be resolved into three isozymes of pI 6.1, 6.3, and 6.5. Antibodies raised against the 45-kDa polypeptide inhibited the G. sorghi CHT activity and showed high specificity in Western blots to a polypeptide of approximately the same size. The evidence suggests that functional G. sorghi CHT is an aggregated protein that consists of 45-kDa polypeptides. A CHT with similar properties was also found in the fungus Colletotrichum graminicola, another pathogen of sorghum.  相似文献   

6.
7.
Monoclonal antibodies against partially purified adenylyl cyclase from bovine brain cortex were raised in mice. Three types of antibody were obtained. Type 1 was specific for the calmodulin-sensitive enzyme. Type II also recognized this enzyme, but recognized the calmodulin-insensitive enzymes from a variety of species and tissues as well. Type I antibodies precipitated their antigens in both the native and denatured forms, while type II strongly favored the denatured forms. Type III antibodies precipitated adenylyl cyclase activity, but as shown by Western blot analysis, were directed against 38-kDa and 45-kDa glycoproteins. The 38-kDa protein was identified as synaptophysin.  相似文献   

8.
The gene encoding the 45/47 kDa glycoprotein (Rv1860) of Mycobacterium tuberculosis was expressed in Streptomyces lividans under its own promoter and under the thiostrepton-inducible Streptomyces promoter PtipA. The recombinant protein was released into the culture medium and, like the native protein, migrated as a double band at 45 and 47 kDa in sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) gels. However, in contrast to the native protein, only the 47-kDa recombinant protein could be labeled with concanavalin A (ConA). Carbohydrate digestion with jack bean alpha-D-mannosidase resulted in a reduction in the molecular mass of the recombinant protein upper band and completely eliminated ConA binding. Two-dimensional gel electrophoresis revealed only one isoelectric point for the recombinant protein. Comparative fingerprinting analysis of the individually purified upper and lower recombinant protein bands, treated under the same conditions with specific proteases, resulted in similar peptide patterns, and the peptides had the same N-terminal sequence, suggesting that migration of the recombinant protein as two bands in SDS-PAGE gels could be due to differences in glycosylation. Mass spectrometry analysis of the recombinant protein indicated that as in native protein, both the N-terminal and C-terminal domains of the recombinant protein are glycosylated. Furthermore, it was determined that antibodies of human tuberculosis patients reacted mainly against the carbohydrate residues of the glycoprotein. Altogether, these observations show that expression of genes for mycobacterial antigens in S. lividans is very useful for elucidation of the functional role and molecular mechanisms of glycosylation in bacteria.  相似文献   

9.
Infection of mammalian cells with herpes simplex virus (HSV) induces a virus-encoded ribonucleotide reductase which is different from the cellular enzyme. This essential viral enzyme consists of two nonidentical subunits of 140 and 38 kilodaltons (kDa) which have not previously been purified to homogeneity. The small subunit of ribonucleotide reductases from other species contains a tyrosyl free radical essential for activity. We have cloned the gene for the small subunit of HSV-1 ribonucleotide reductase into a tac expression plasmid vector. After transfection of Escherichia coli, expression of the 38-kDa protein was detected in immunoblots with a specific monoclonal antibody. About 30 micrograms of protein was produced per liter of bacterial culture. The 38-kDa protein was purified to homogeneity in an almost quantitative yield by immunoaffinity chromatography. It contained a tyrosyl free radical which gave a specific electron paramagnetic resonance spectrum identical to that we have observed in HSV-infected mammalian cells and clearly different from that produced by the E. coli and mammalian ribonucleotide reductases. The recombinant 38-kDa subunit had full activity when assayed in the presence of HSV-infected cell extracts deficient in the native 38-kDa subunit.  相似文献   

10.
Mitochondrial malate dehydrogenase (m-MDH; EC 1.1.1.37), from mycelial extracts of the thermophilic, aerobic fungus Talaromyces emersonii, was purified to homogeneity by sequential hydrophobic interaction and biospecific affinity chromatography steps. Native m-MDH was a dimer with an apparent monomer mass of 35 kDa and was most active at pH 7.5 and 52 degrees C in the oxaloacetate reductase direction. Substrate specificity and kinetic studies demonstrated the strict specificity of this enzyme, and its closer similarity to vertebrate m-MDHs than homologs from invertebrate or mesophilic fungal sources. The full-length m-MDH gene and its corresponding cDNA were cloned using degenerate primers derived from the N-terminal amino acid sequence of the native protein and multiple sequence alignments from conserved regions of other m-MDH genes. The m-MDH gene is the first oxidoreductase gene cloned from T. emersonii and is the first full-length m-MDH gene isolated from a filamentous fungal species and a thermophilic eukaryote. Recombinant m-MDH was expressed in Escherichia coli, as a His-tagged protein and was purified to apparent homogeneity by metal chelate chromatography on an Ni2+-nitrilotriacetic acid matrix, at a yield of 250 mg pure protein per liter of culture. The recombinant enzyme behaved as a dimer under nondenaturing conditions. Expression of the recombinant protein was confirmed by Western blot analysis using an antibody against the His-tag. Thermal stability studies were performed with the recombinant protein to investigate if results were consistent with those obtained for the native enzyme.  相似文献   

11.
The mycoparasite Stachybotrys elegans produces two exo- and one endo-acting chitinases when grown on chitin. We purified to homogeneity one of the exo-acting chitinases, beta-N-acetylhexosaminidase and partially characterized its physical and biochemical properties. The native enzyme has a molecular mass of 120 kDa when determined by gel filtration and 68 kDa by sodium dodecyl sulfate - polyacrylamide gel electrophoresis indicating that the native protein probably occurs as a dimer in solution. The purified beta-N-acetylhexosaminidase is most active at pH 5.0 and 40 degrees C and hydrolyzes the p-nitrophenyl-N-acetyl-beta-D-glucosaminide with apparent Km of 84.6 microM. Polyclonal antibodies raised against the 68-kDa beta-N-acetylhexosaminidase (NAG-68) indicated that the antibody is highly specific and recognizes the protein in crude filtrate preparation. This suggests that the protein is a not a proteolytic product of another protein. Western blot analysis showed that the activity of NAG-68 was induced when S. elegans was grown on purified cell wall fragments of its host, Rhizoctonia solani, as well as during antagonistic interaction of the mycoparasite and host when both were grown on synthetic medium with or without supplemental carbon source.  相似文献   

12.
A full-length cDNA (rc55) encoding the major rabbit zona pellucida (ZP) glycoprotein (55 kDa) has been cloned and sequenced. A lambda gt11 expression library was constructed using poly(A)+ mRNA isolated from sexually immature rabbit ovaries which contain large numbers of developing follicles. The rc55 cDNA was identified using affinity purified polyclonal antibodies specific to ZP antigens which are shared among mammalian species. The deduced amino acid sequence of the full-length rc55 clone was matched to the NH2-terminal 25-amino acid sequence obtained for this protein. The predicted amino acid sequence consists of 540 amino acids including a putative signal peptide of 18-24 residues and six potential N-glycosylation sites. The cDNA hybridizes to a 2000-base species of mRNA from rabbit ovary which is not detected in other rabbit tissues. The message is present early in ovarian follicular development and is approximately 600-fold greater in sexually immature as compared with sexually mature rabbit ovaries. This cDNA was expressed as a cro-beta-galactosidase fusion protein using the pEX expression vector. Antibodies against native rabbit ZP, affinity-purified on the recombinant 55-kDa ZP protein, were found to recognize the native rabbit ZP glycoprotein, indicating partial conservation of native epitopes in the expressed recombinant protein.  相似文献   

13.
14.
A 40-kDa sexual stage radiolabeled surface protein of Plasmodium falciparum, Pfs40, was previously identified as a potential target antigen of transmission blocking immunity by an immunogenetic approach. Synthetic oligonucleotide "guessmers," based on microsequenced tryptic peptides of Pfs40 purified by two-dimensional gel electrophoresis, were used to clone the full length cDNA and genomic DNA encoding Pfs40. The deduced amino acid sequence predicted an integral membrane protein containing five EF-hand calcium-binding domains. The biological activity of one or more of these domains was confirmed by binding of 45Ca to both native and recombinant Pfs40. Antisera to recombinant Pfs40 immunoprecipitated the native radiolabeled 40-kDa surface protein. The predicted noncytosolic membrane-associated localization of Pfs40 is unique within the EF-hand calcium-binding protein superfamily.  相似文献   

15.
Immunochemical characterization of rat brain protein kinase C   总被引:11,自引:0,他引:11  
Polyclonal antibodies against rat brain protein kinase C (the Ca2+/phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca2+, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca2+/phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of [3H]phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. This degraded form of the phorbol ester-binding protein still requires phospholipid for activity but, unlike the native enzyme, becomes less dependent on Ca2+. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca2+-independent/phospholipid-dependent phorbol ester-binding protein.  相似文献   

16.
Binding of fibronectin to substrate-attached cells and to Staphylococcus aureus is mediated by the amino-terminal 70-kDa portion of fibronectin. The 70-kDa amino-terminus is composed of nine type I and two type II internal homology units, each containing two intrachain disulfide bonds. The exact structural features of the 70-kDa amino-terminus that are necessary for binding to cells and bacteria are not known. We characterized a recombinant 70-kDa protein from the amino-terminus of rat fibronectin using a baculovirus expression system. Recombinant 70-kDa (r70kDa) protein was easily purified in high amounts from the conditioned medium by affinity chromatography on gelatin-agarose. Secretion was much less when N-linked glycosylation was blocked by tunicamycin. Like the native fragment, the r70kDa protein contains intrachain disulfide bonds. In addition, the r70kDa protein was indistinguishable from the nonrecombinant 70-kDa fragment in its ability to compete for binding sites on fibroblasts and S. aureus. Thus, the r70kDa protein retains the important functional characteristics of the native fragment. This expression system is well adapted to studying the structural features important for the interaction of 70-kDa protein with cells.  相似文献   

17.
Streptococcal fibronectin binding protein I (SfbI) mediates adherence to and invasion of Streptococcus pyogenes into human epithelial cells. In this study, we analysed the binding activity of distinct domains of SfbI protein towards its ligand, the extracellular matrix component fibronectin, as well as the biological implication of the binding events during the infection process. By using purified recombinant SfbI derivatives as well as in vivo expressed SfbI domains on the surface of heterologous organism Streptococcus gordonii , we were able to dissociate the two major streptococcal target domains on the human fibronectin molecule. The SfbI repeat region exclusively bound to the 30 kDa N-terminal fragment of fibronectin, whereas the SfbI spacer region exclusively bound to the 45 kDa collagen-binding fragment of fibronectin. In the case of native surface-expressed SfbI protein, an induced fit mode of bacteria–fibronectin interaction was identified. We demonstrate that binding of the 30 kDa fibronectin fragment to the repeat region of SfbI protein co-operatively activates the adjacent SfbI spacer domain to bind the 45 kDa fibronectin fragment. The biological consequence arising from this novel mode of fibronectin targeting was analysed in eukaryotic cell invasion assays. The repeat region of SfbI protein is mediating adherence and constitutes a prerequisite for subsequent invasion, whereas the SfbI spacer domain efficiently triggers the invasion process of streptococci into the eukaryotic cell. Thus, we were able to dissect bacterial adhesion from invasion by manipulating one protein. SfbI protein therefore represents a highly evolved prokaryotic molecule that exploits the host factor fibronectin not only for extracellular targeting but also for its subsequent activation that leads to efficient cellular invasion.  相似文献   

18.
Naegleria fowleri, an amoeboflagellate, is the causative agent of Primary Amoebic Meningoencephalitis, a fulminating disease of the central nervous system. In order to elucidate the mechanisms of pathogenicity of this amoeba, a cDNA expression library was prepared from N. fowleri RNA. A specific protein was found to be expressed from a cDNA clone designated Mp2CL5. Northern blot analysis showed that the Mp2CL5 mRNA was expressed in pathogenic N. fowleri but was not expressed in non-pathogenic Naegleria species nor in Acanthamoeba. Western blot analysis using anti-N. fowleri antiserum demonstrated that IPTG-induced Escherichia coli Mp2CL5 expressed a 23-kDa recombinant protein. The Mp2CL5 recombinant protein was histidine-tagged and purified to homogeneity from E. coli. A polyclonal rabbit antiserum was prepared against the purified Mp2CL5 recombinant protein. This antibody was used to further characterize the Mp2CL5 native protein expressed by N. fowleri. Western blot analysis in conjunction with immunofluorescence microscopy demonstrated the presence of a native protein of 17 kDa on the plasma membrane of N. fowleri trophozoites. The native N. fowleri protein was expressed in the logarithmic phase of trophozoite growth and the production of this protein increased through the stationary phase of growth. Studies are in progress to examine further its role as a virulence factor.  相似文献   

19.
White lupin (Lupinus albus L.) is considered a model system for understanding plant acclimation to nutrient deficiency. It acclimates to phosphorus (P) and iron (Fe) deficiency by the development of short, densely clustered lateral roots called proteoid (or cluster) roots; proteoid-root development is further influenced by nitrogen (N) supply. In an effort to better understand proteoid root function under various nutrient deficiencies, we used nylon filter arrays to analyze 2,102 expressed sequence tags (ESTs) from proteoid roots of P-deficient white lupin. These have been previously analyzed for up-regulation in ?P proteoid roots, and were here analyzed for up-regulation in proteoid roots of N-deprived plants. We identified a total of 19 genes that displayed up-regulation in proteoid roots under both P and N deprivation. One of these genes showed homology to putative formamidases. The corresponding open reading frame was cloned, overexpressed in E. coli, and the encoded protein was purified; functional characterization of the recombinant protein confirmed formamidase activity. Though many homologues of bacterial and fungal formamidases have been identified in plants, to our knowledge, this is the first report of a functional characterization of a plant formamidase.  相似文献   

20.
Abstract: Plasminogen (PGn) that we identified in microglial-conditioned medium has a neurotrophic factor-like effect on cultured neurons. We have also shown that PGn binds specifically to a protein with a molecular mass of 45 kDa in the neuronal plasma membrane. As a candidate PGn receptor-like molecule on the neuronal surface, this 45-kDa protein was purified from the plasma membrane of embryonic rat brain. Amino acid sequence analysis of polypeptides derived from the cleavage of the protein with cyanogen bromide and V8 protease revealed that the 45-kDa protein is identical to rat α-enolase. In fact, PGn was found to bind to purified rat α-enolase and also to a synthetic peptide (30 residues) that corresponds to the carboxyl terminal region of rat α-enolase. Physical properties of the 45-kDa protein, such as molecular mass, isoelectric point, and the ability to form dimers, are quite similar to those of α-enolase. The 45-kDa PGn-binding protein in the plasma membrane was also recognized by anti-rat α-enolase antibody, and pretreatment with α-enolase antibody markedly diminished the PGn-binding to the plasma membrane. In addition, immunocytochemical staining of the cultured cells under the nonpermeable condition showed that α-enolase is present on the cell surface of a certain population of neurons. These results suggest that α-enolase may function as a PGn-binding molecule on the neuronal cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号