首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein tyrosine phosphatase (PTP)-like phytase, PhyAsr, from Selenomonas ruminantium is a novel member of the PTP superfamily, and the only described member that hydrolyzes myo-inositol-1,2,3,4,5,6-hexakisphosphate. In addition to the unique substrate specificity of PhyAsr, the phosphate-binding loop (P-loop) has been reported to undergo a conformational change from an open (inactive) to a closed (active) conformation upon ligand binding at low ionic strength. At high ionic strengths, the P-loop was observed in the closed, active conformation in both the presence and absence of ligand. To test whether the P-loop movement can be induced by changes in ionic strength, we examined the effect that ionic strength has on the catalytic efficiency of PhyAsr, and determined the structure of the enzyme at several ionic strengths. The catalytic efficiency of PhyAsr is highly sensitive to ionic strength, with a seven-fold increase in k(cat)/K(m) and a ninefold decrease in K(m) when the ionic strength is increased from 100 to 500 mm. Surprisingly, the P-loop is observed in the catalytically competent conformation at all ionic strengths, despite the absence of a ligand. Here we provide structural evidence that the ionic strength dependence of PhyAsr and the conformational change in the P-loop are not linked. Furthermore, we demonstrate that the previously reported P-loop conformational change is a result of irreversible oxidation of the active site thiolate. Finally, we rationalize the observed P-loop conformational changes observed in all oxidized PTP structures.  相似文献   

2.
3.
For the first time a dual pathway for dephosphorylation of myo-inositol hexakisphosphate by a histidine acid phytase was established. The phytate-degrading enzyme of Klebsiella terrigena degrades myo-inositol hexakisphosphate by stepwise dephosphorylation, preferably via D-Ins(1,2,4,5,6)P5, D-Ins(1,2,5,6)P4, D-Ins(1,2,6)P3, D-Ins(1,2)P2 and alternatively via D-Ins(1,2,4,5,6)P5, Ins(2,4,5,6)P4, D-Ins(2,4,5)P3, D-Ins(2,4)P2 to finally Ins(2)P. It was estimated that more than 98% of phytate hydrolysis occurs via D-Ins(1,2,4,5,6)P5. Therefore, the phytate-degrading enzyme from K. terrigena has to be considered a 3-phytase (EC 3.1.3.8). A second dual pathway of minor importance could be proposed that is in accordance with the results obtained by analysis of the dephosphorylation products formed by the action of the phytate-degrading enzyme of K. terrigena on myo-inositol hexakisphosphate. It proceeds preferably via D-Ins(1,2,3,5,6)P5, D-Ins(1,2,3,6)P4, Ins(1,2,3)P3, D-Ins(2,3)P2 and alternatively via D-Ins(1,2,3,5,6)P5, D-Ins(2,3,5,6)P4, D-Ins(2,3,5)P3, D-Ins(2,3)P2 to finally Ins(2)P. D-Ins(2,3,5,6)P4, D-Ins(2,3,5)P3, and D-Ins(2,4)P2 were reported for the first time as intermediates of enzymatic phytate dephosphorylation. A role of the phytate-degrading enzyme from K. terrigena in phytate breakdown could not be ruled out. Because of its cytoplasmatic localization and the suggestions for substrate recognition, D-Ins(1,3,4,5,6)P5 might be the natural substrate of this enzyme and, therefore, may play a role in microbial pathogenesis or cellular myo-inositol phosphate metabolism.  相似文献   

4.
The pathway of dephosphorylation of myo-inositol hexakisphosphate by the phytate-degrading enzymes of Bacillus subtilis 168, Bacillus amyloliquefaciens ATCC 15841, and Bacillus amyloliquefaciens 45 was established using a combination of high-performance ion chromatography analysis and kinetic studies. The data demonstrate that all the Bacillus phytate-degrading enzymes under investigation dephosphorylate myo-inositol hexakisphosphate by sequential removal of phosphate groups via two independent routes; the routes proceed via D-Ins(1,2,4,5,6)P5 to Ins(2,4,5,6)P4 to finally Ins(2,4,6)P3 or D-Ins(2,5,6)P3 and via D-Ins(1,2,4,5,6)P5 to D-Ins(1,2,5,6)P4 to finally D-Ins(1,2,6)P3. The resulting myo-inositol trisphosphate D-Ins(1,2,6)P3 was degraded via D-Ins(2,6)P2 to finally Ins(2)P after prolonged incubation times in combination with increased enzyme concentration.  相似文献   

5.
Protein phosphorylation plays critical roles in the regulation of protein activity and cell signaling. The level of protein phosphorylation is controlled by protein kinases and protein tyrosine phosphatases (PTPs). Disturbance of the equilibrium between protein kinase and PTP activities results in abnormal protein phosphorylation, which has been linked to the etiology of several diseases, including cancer. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by bis (4-trifluoromethyl-sulfonamidophenyl, TFMS)-1,4-diisopropylbenzene (PTP inhibitor IV). PTP inhibitor IV inhibited DUSP14 phosphatase activity. Kinetic studies with PTP inhibitor IV and DUSP14 revealed a competitive inhibition, suggesting that PTP inhibitor IV binds to the catalytic site of DUSP14. PTP inhibitor IV effectively and specifically inhibited DUSP14-mediated dephosphorylation of JNK, a member of the mitogen-activated protein kinase (MAPK) family.  相似文献   

6.
Chu HM  Wang AH 《Proteins》2007,66(4):996-1003
The P-loop-containing protein phos-phatases are important regulators in signal transduction. These enzymes have structural and functional similarity with a conserved sequence of Dx(25-41)HCxxGxxR(T/S) essential for catalysis. The singular protein tyrosine phosphatase (PTP) from archaeal Sulfolobus solfataricus is one of the smallest known PTPs with extreme thermostability. Here, we report the crystal structure of this phosphatase and its complexes with two tyrosyl phosphopeptides A-(p)Y-R and N-K-(p)Y-G-N. The structure suggests the minimal structural motif of the PTP family, having two variable sequences inserted between the beta2-beta3 and beta3-beta4 strands, respectively. The phosphate of both phosphopeptide substrates is bound to the P-loop through several hydrogen bonds. Comparison of several phosphatase-substrate complexes revealed that Gln135 on the Q-loop has different modes of recognition toward phosphopeptides. The substrate specificity of SsoPTP is primarily localized at the phosphotyrosine, suggesting that this phosphatase may be a prototypical PTP.  相似文献   

7.
Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loop in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an ‘atypically open’ conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.  相似文献   

8.
Using a combination of high-performance ion chromatography analysis and kinetic studies, the stereospecificity of myo-inositol hexakisphosphate dephosphorylation by the phytate-degrading enzyme P2 of Escherichia coli was established. High-performance ion chromatography revealed that the phytate-degrading enzyme P2 of E. coli degrades myo-inositol hexakisphosphate by stepwise dephosphorylation via D/L-Ins(1,2,3,4,5)P(5), D/L-Ins(2,3,4,5)P(4), D/L-Ins(2,4,5)P(3) or D/L-Ins(1,2,4)P(3), D/L-Ins(1,2)P(2) or Ins(2, 5)P(2) or D/L-Ins(4,5)P(2) to finally Ins(2)P or Ins(5)P. Kinetic parameters for myo-inositol pentakisphosphate hydrolysis by E. coli and wheat phytase, respectively, showed that the myo-inositol pentakisphosphate intermediate produced either by the phytate-degrading enzyme of wheat or E. coli are not identical. The absolute configuration of the myo-inositol pentakisphosphate isomer produced by the E. coli enzyme was determined by taking into consideration that wheat phytase produces predominantly the D-Ins(1, 2,3,5,6)P(5) isomer (Lim, P.E., Tate, M.E., 1973. The phytases: II. Properties of phytase fraction F(1) and F(2) from wheat bran and the myo-inositol phosphates produced by fraction F(2). Biochim. Biophys. Acta 302, 326-328). The data demonstrate that the phytate-degrading enzyme P2 of E. coli dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-Ins(1,2,3,4,5)P(5), D-Ins(2,3,4,5)P(4), D-Ins(2,4,5)P(3), Ins(2,5)P(2) to finally Ins(2)P (notation 6/1/3/4/5).  相似文献   

9.
Phosphosignaling through pSer/pThr/pTyr is emerging as a common signaling mechanism in prokaryotes. The human pathogen Staphylococcus aureus produces two low-molecular-weight protein tyrosine phosphatases (PTPs), PtpA and PtpB, with unknown functions. To provide the structural context for understanding PtpA function and substrate recognition, establish PtpA's structural relations within the PTP family, and provide a framework for the design of specific inhibitors, we solved the crystal structure of PtpA at 1 Å resolution. While PtpA adopts the common, conserved PTP fold and shows close overall similarity to eukaryotic PTPs, several features in the active site and surface organization are unique and can be explored to design selective inhibitors. A peptide bound in the active site mimics a phosphotyrosine substrate, affords insight into substrate recognition, and provides a testable substrate prediction. Genetic deletion of ptpA or ptpB does not affect in vitro growth or cell wall integrity, raising the possibility that PtpA and PtpB have specialized functions during infection.  相似文献   

10.
In cerebral cortex of rats treated with increasing doses of LiCl, the relative concentrations of Ins(1)P, Ins(4)P and Ins(5)P (when InsP is a myo-inositol phosphate) are approx. 10:1:0.2 at all doses. In rats treated with LiCl followed by increasing doses of pilocarpine a similar relationship occurs. myo-Inositol-1-phosphatase (InsP1ase) from bovine brain hydrolyses Ins(1)P, Ins(4)P and Ins(5)P at comparable rates, and these substrates have similar Km values. The hydrolysis of Ins(4)P is inhibited by Li+ to a greater degree than is hydrolysis of Ins(1)P and Ins(5)P. D-Ins(1,4,5)P3 and D-Ins(1,4)P2 are neither substrates nor inhibitors of InsP1ase. A dialysed high-speed supernatant of rat brain showed a greater rate of hydrolysis of Ins(1)P than of D-Ins(1,4)P2 and a lower sensitivity of the bisphosphate hydrolysis to LiCl, as compared with the monophosphate. That enzyme preparation produced Ins(4)P at a greater rate than Ins(1)P when D-Ins(1,4)P2 was the substrate. The amount of D-Ins(3)P [i.e. L-Ins(1)P, possibly from D-Ins(1,3,4)P3] is only 11% of that of D-Ins(1)P on stimulation with pilocarpine in the presence of Li+. DL-Ins(1,4)P2 was hydrolysed by InsP1ase to the extent of about 50%; both Ins(4)P and Ins(1)P are products, the former being produced more rapidly than the latter; apparently L-Ins(1,4)P2 is a substrate for InsP1ase. Li+, but not Ins(2)P, inhibited the hydrolysis of L-Ins(1,4)P2. The following were neither substrates nor inhibitors of InsP1ase; Ins(1,6)P2, Ins(1,2)P2, Ins(1,2,5,6)P4, Ins(1,2,4,5,6)P5, Ins(1,3,4,5,6)P5 and phytic acid. myo-Inositol 1,2-cyclic phosphate was neither substrate nor inhibitor of InsP1ase. We conclude that the 10-fold greater tissue contents of Ins(1)P relative to Ins(4)P in both stimulated and non-stimulated rat brain in vivo are the consequence of a much larger amount of PtdIns metabolism than polyphosphoinositide metabolism under these conditions.  相似文献   

11.
Cho SH  Lee CH  Ahn Y  Kim H  Kim H  Ahn CY  Yang KS  Lee SR 《FEBS letters》2004,560(1-3):7-13
Protein tyrosine phosphatase (PTP) is a family of enzymes important for regulating cellular phosphorylation state. The oxidation and consequent inactivation of several PTPs by H2O2 are well demonstrated. It is also shown that recovery of enzymatic activity depends on the availability of cellular reductants. Among these redox-regulated PTPs, PTEN, Cdc25 and low molecular weight PTP are known to form a disulfide bond between two cysteines, one in the active site and the other nearby, during oxidation by H2O2. The disulfide bond likely confers efficiency in the redox regulation of the PTPs and protects cysteine-sulfenic acid of PTPs from further oxidation. In this review, through a comparative analysis of the oxidation process of Yap1 and PTPs, we propose the mechanism of disulfide bond formation in the PTPs.  相似文献   

12.
Seth D  Rudolph J 《Biochemistry》2006,45(28):8476-8487
MAP kinase phosphatase 3 (MKP3) is a protein tyrosine phosphatase (PTP) for which in vivo evidence suggests that regulation can occur by oxidation and/or reduction of the active site cysteine. Using kinetics and mass spectrometry, we have probed the biochemical details of oxidation of the active site cysteine in MKP3, with particular focus on the mechanism of protection from irreversible inactivation to the sulfinic or sulfonic acid species. Like other PTPs, MKP3 was found to be rapidly and reversibly inactivated by mild treatment with hydrogen peroxide. We demonstrate that unlike the case for some PTPs, the sulfenic acid of the active site cysteine in MKP3 is not stabilized in the active site but instead is rapidly trapped in a re-reducible form. Unlike the case for other PTPs, the sulfenic acid in MKP3 does not form a sulfenyl-amide species with its neighboring residue or a disulfide with a single proximate cysteine. Instead, multiple cysteines distributed in both the N-terminal substrate-binding domain (Cys147 in particular) and the C-terminal catalytic domain (Cys218) are capable of rapidly and efficiently trapping the sulfenic acid as a disulfide. Our results extend the diversity of mechanisms utilized by PTPs to prevent irreversible oxidation of their active sites and expand the role of the N-terminal substrate recognition domain in MKP3 to include redox regulation.  相似文献   

13.
Inositol polyphosphatases (IPPases), particularly those that can hydrolyze myo-inositol hexakisphosphate (Ins P6), are of biotechnological interest for their ability to reduce the metabolically unavailable organic phosphate content of feedstuffs and to produce lower inositol polyphosphates (IPPs) for research and pharmaceutical applications. Here, the gene coding for a new protein tyrosine phosphatase (PTP)-like IPPase was cloned from Megasphaera elsdenii (phyAme), and the biochemical properties of the recombinant protein were determined. The deduced amino acid sequence of PhyAme is similar to known PTP-like IPPases (29–44% identity), and the recombinant enzyme displayed strict specificity for IPP substrates. Optimal IPPase activity was displayed at an ionic strength of 250 mM, a pH of 5.0, and a temperature of 60°C. In order to elucidate its stereospecificity of Ins P6 dephosphorylation, a combination of high-performance ion-pair chromatography and kinetic studies was conducted. PhyAme displayed a stereospecificity that is unique among enzymes belonging to this class in that it preferentially cleaved Ins P6 at one of two phosphate positions, 1D-3 or 1D-4. PhyAme followed two distinct and specific routes of hydrolysis, predominantly degrading Ins P6 to Ins(2)P via: (a) 1D-Ins(1,2,4,5,6)P5, 1D-Ins(1,2,5,6)P4, 1D-Ins(1,2,6)P3, and 1D-Ins(1,2)P2 (60%) and (b) 1D-Ins(1,2,3,5,6)P5, 1D-Ins(1,2,3,6)P4, Ins(1,2,3)P3, and d/l-Ins(1,2)P2 (35%).  相似文献   

14.
Mitsuokella multacida expresses a unique inositol polyphosphatase (PhyAmm) that is composed of tandem repeats (TRs). Each repeat possesses a protein tyrosine phosphatase (PTP) active-site signature sequence and fold. Using a combination of structural, mutational, and kinetic studies, we show that the N-terminal (D1) and C-terminal (D2) active sites of the TR have diverged and possess significantly different specificities for inositol polyphosphate. Structural analysis and molecular docking calculations identify steric and electrostatic differences within the substrate binding pocket of each TR that may be involved in the altered substrate specificity. The implications of our results for the biological function of related PTP-like phytases are discussed. Finally, the structures and activities of PhyAmm and tandemly repeated receptor PTPs are compared and discussed. To our knowledge, this is the first example of an inositol phosphatase with tandem PTP domains possessing substrate specificity for different inositol phosphates.  相似文献   

15.
MAP kinase phosphatase 5 (MKP5) is a member of the mitogen-activated protein kinase phosphatase (MKP) family and selectively dephosphorylates JNK and p38. We have determined the crystal structure of the catalytic domain of human MKP5 (MKP5-C) to 1.6 A. In previously reported MKP-C structures, the residues that constitute the active site are seriously deviated from the active conformation of protein tyrosine phosphatases (PTPs), which are accompanied by low catalytic activity. High activities of MKPs are achieved by binding their cognate substrates, representing substrate-induced activation. However, the MKP5-C structure adopts an active conformation of PTP even in the absence of its substrate binding, which is consistent with the previous results that MKP5 solely possesses the intrinsic activity. Further, we identify a sequence motif common to the members of MKPs having low catalytic activity by comparing structures and sequences of other MKPs. Our structural information provides an explanation of constitutive activity of MKP5 as well as the structural insight into substrate-induced activation occurred in other MKPs.  相似文献   

16.
Eukaryotic low-molecular-weight protein tyrosine phosphatases (LMW PTPs) contain a conserved serine, a histidine with an elevated pKa, and an active site asparagine that together form a highly conserved hydrogen bonding network. This network stabilizes the active site phosphate binding loop for optimal substrate binding and catalysis. In the phosphatase from the bovine parasite Tritrichomonas foetus (TPTP), both the conserved serine (S37) and asparagine (N14) are present, but the conserved histidine has been replaced by a glutamine residue (Q67). Site-directed mutagenesis, kinetic, and spectroscopic experiments suggest that Q67 is located near the active site and is important for optimal catalytic activity. Kinetic experiments also suggest that S37 participates in the active site/hydrogen bonding network. Nuclear magnetic resonance spectroscopy was used to determine the three-dimensional structure of the TPTP enzyme and to further examine the roles of S37 and Q67. The backbone conformation of the TPTP phosphate binding loop is nearly superimposable with that of other tyrosine phosphatases, with N14 existing in a strained, left-handed conformation that is a hallmark of the active site hydrogen bonding network in the LMW PTPs. As expected, both S37 and Q67 are located at the active site, but in the consensus structure they are not within hydrogen bonding distance of N14. The hydrogen bond interactions that are observed in X-ray structures of LMW PTPs may in fact be transient in solution. Protein dynamics within the active site hydrogen bonding network appear to be affected by the presence of substrate or bound inhibitors such as inorganic phosphate.  相似文献   

17.
18.
Intracellular pathogenic bacteria manipulate host signal transduction pathways to facilitate infection. Mycobacterium tuberculosis protein tyrosine phosphatases (PTPs) PtpA and PtpB are thought to be secreted into host cells and interfere with unidentified signals. To illuminate the mechanisms of regulation and substrate recognition, we determined the 1.7 A resolution crystal structure of PtpB in complex with the product phosphate. The protein adopts a simplified PTP fold, which combines features of the conventional PTPs and dual-specificity phosphatases. PtpB shows two unusual elaborations--a disordered, acidic loop and a flexible, two-helix lid that covers the active site--that are specific to mycobacterial orthologs. Biochemical studies suggest that substrate mimicry in the lid may protect the phosphatase from oxidative inactivation. The insertion and deletion of large structural elements in PtpB suggest that, outside the active site module, the PTP family is under unusual selective pressure that promotes changes in overall structure.  相似文献   

19.
D- and L-myo-inositol 1,2,4,5-tetrakisphosphate (Ins(1,2,4,5)P(4)) were investigated for their ability to bind to the D-myo-inositol 1, 4,5-trisphosphate (Ins(1,4,5)P(3)) receptor in a bovine adrenal cortical membrane fraction, to mobilize intracellular Ca(2+) stores in Xenopus oocytes, and to bind to the rat brain Ins(1,4,5)P(3) 3-kinase overexpressed and purified in E. coli. In competitive binding experiments with the Ins(1,4,5)P(3) receptor, D-Ins(1,2,4, 5)P(4) effectively displaced [(3)H]Ins(1,4,5)P(3) in a concentration-dependent manner with a potency comparable to that of D-Ins(1,4,5)P(3), while L-Ins(1,2,4,5)P(4) was approximately 50-fold less effective than D-Ins(1,4,5)P(3) and D-Ins(1,2,4,5)P(4). The DL-Ins(1,2,4,5)P(4) racemate bound to the Ins(1,4,5)P(3) receptor with an apparent intermediate efficiency. Injection of D-Ins(1,2,4, 5)P(4) into oocytes evoked a chloride current dependent on intracellular Ca(2+) mobilization in which the agonists ranked in a similar order of potency as in the Ins(1,4,5)P(3) receptor binding. On the other hand, D-Ins(1,2,4,5)P(4) only inhibited the binding of [(3)H]Ins(1,4,5)P(3) to 3-kinase very weakly with a markedly reduced potency compared to D-Ins(1,4,5)P(3), indicating that D-Ins(1,2,4, 5)P(4) is not an effective competitor in the phosphorylation of [(3)H]-Ins(1,4,5)P(3) by 3-kinase. The results, therefore, clearly indicate that D-Ins(1,2,4,5)P(4) is as effective as D-Ins(1,4,5)P(3) in the binding to the receptor but not 3-kinase, and access of Ins(1, 2,4,5)P(4) over the Ins(1,4,5)P(3) receptor calls for stringent stereospecificity with D-Ins(1,2,4,5)P(4) being the active form in DL-Ins(1,2,4,5)P(4)-mediated Ca(2+) mobilization.  相似文献   

20.
Protein phosphorylation has been identified as a reversible mechanism for the regulated suppression of metabolism and thermogenesis during mammalian hibernation. The effects of hibernation on the activity of serine/threonine and tyrosine protein phosphatases (PP1, PP2A, PP2C and PTPs) were assessed in five organs of Richardson’s ground squirrel. Each phosphatase subfamily responded differently during torpor, and each showed organ-specific patterns of activity changes. The distribution of PP1 catalytic subunit (PP1c) isoforms (α, δ, γ1) was assessed in five organs, and changes in the subcellular distribution of PP1 were observed during hibernation in liver and muscle. For example, in muscle, cytosolic PP1 content increased and myofibril-associated PP1 decreased during torpor. PP1c from ground squirrel liver was purified to homogeneity and characterized; temperature effects on PP1c maximal activity suggested that temperature had little or no effect on relative dephosphorylation potential at low temperatures. However, nucleotide inhibition of PP1c by ATP, ADP and AMP was much weaker at 5 °C compared with 37 °C assay temperatures. PP2A activity decreased in three organs (brown adipose, kidney, brain) during hibernation whereas PP2C activity was increased in liver and brain. PTPs were assessed using both a general substrate (ENDpYINASL) and a substrate (DADEpYLIPQQG) specific for PTPs containing the SH2-binding site; both revealed hibernation-associated changes in PTP activities. Changes in protein phosphatase activities suggest the relative importance of these modules in controlling metabolic function and cellular processes during mammalian hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号