首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of cyclosporine A (CyA) treatment on the hepatic content and biliary output of reduced (GSH) and oxidized (GSSG) glutathione and lipid peroxidation in the liver, and the ability of S-adenosylmethionine (SAMe) to antagonize the CyA-induced alterations were studied in male Wistar rats. To evaluate the efficacy of SAMe, three CyA and SAMe protocols were used: cotreatment with SAMe plus CyA, pretreatment with SAMe before starting cotreatment, and post-treatment with SAMe after beginning treatment with CyA alone. CyA treatment for one and four weeks depleted liver GSH, decreased the GSH/GSSG ratio and significantly reduced GSH and GSSG biliary concentrations and secretion rates. Additionally, long-term treatment enhanced lipid peroxidation. By contrast, when the rats were treated with CyA plus SAMe using any of the administration protocols, SAMe was seen to be efficient in antagonizing the GSH hepatic depletion, the changes in hepatic GSH/GSSG ratio and the increase induced by CyA in lipid peroxidation. Furthermore, SAMe also abolished the effects of CyA on the biliary secretion rates of GSH and GSSG. The efficacy of SAMe was similar, regardless of the administration protocols used. In conclusion, our results clearly demonstrate that SAMe is good for preventing, antagonizing and reversing the CyA-induced alterations in the hepatobiliary homeostasis of glutathione.  相似文献   

2.
Free radicals are involved in aging and cyclosporin A-induced toxicity. The age-related changes in the liver oxidative status of glutathione, lipid peroxidation, and the activity of the enzymatic antioxidant defense system, as well as the influence of aging on the susceptibility to the hepatotoxic effects of cyclosporin (CyA) were investigated in rats of different ages (1, 2, 4, and 24 months). The hepatic content of reduced glutathione (GSH) increased with aging, peaked at 4 months, and decreased in senescent rats. By contrast, glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS) concentrations and superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the oldest than in the youngest rats. CyA treatment, besides inducing the well-known cholestatic syndrome, increased liver GSSG and TBARS contents and the GSSG/GSH molar ratio, and altered the nonenzymatic and enzymatic antioxidant defense systems. The CyA-induced cholestasis and hepatic depletion of GSH, and the increases in the GSSG/GSH ratio, and in GSSG and TBARS concentrations were higher in the older than the mature rats. Moreover, superoxide dismutase and catalase activities were found to be significantly decreased only in treated senescent rats. The higher CyA-induced oxidative stress, lipoperoxidation, and decreases in the antioxidant defense systems in the aged animals render them more susceptible to the hepatotoxic effects of cyclosporin.  相似文献   

3.
Hormonal regulation of glutathione efflux   总被引:3,自引:0,他引:3  
The efflux of GSH has been shown previously to be a saturable process in both isolated rat hepatocytes and perfused liver, suggesting a carrier-mediated transport mechanism. The possibility in hormonal regulation of this process has been raised by recent reports. Our present work examined the role of hormones known to affect intracellular signal transduction mechanisms on GSH efflux in cultured rat hepatocytes and perfused rat livers. We found that cAMP-dependent factors, such as cholera toxin (CT), dibutyryl cAMP, forskolin, and glucagon all stimulated GSH efflux in cultured rat hepatocytes. The efflux kinetics were compared in cultured cells incubated with or without CT; the stimulation of GSH efflux was related to a near doubling of the Vmax while exhibiting no significant alteration of the Km. The increase in intracellular cAMP level associated with the threshold for this stimulatory effect was 25% above control. The stimulatory effect of CT could not be blocked by cyclohexamide pretreatment or reversed by colchicine treatment. The stimulatory effect of glucagon was abolished in the presence of ouabain but not in the presence of barium. On the other hand, hormones which act through Ca2+ and protein kinase C, such as phenylephrine and vasopressin, had no effect on GSH efflux in the cultured cells. In the perfused liver model, glucagon (10 nM) and dibutyryl cAMP (8 microM) stimulated sinusoidal GSH efflux to 130 and 144% of control values, respectively, and increased bile flow while not affecting biliary GSH efflux. Finally, the physiological significance of glucagon-mediated stimulation of sinusoidal GSH efflux was assessed by both plasma GSH and glucose levels in response to in vivo glucagon infusion. The threshold dose of glucagon for significant increase in plasma GSH (5.21 pmol/min) was lower than for glucose (15.61 pmol/min). At the highest glucagon infusion rate (261 pmol/min), plasma GSH level doubled while glucose level increased 80%. In conclusion, increased cAMP stimulates GSH efflux in cultured rat hepatocytes and perfused livers. The stimulatory effect of cAMP is exerted at the sinusoidal pole and appears to be mediated by hyperpolarization of hepatocytes by stimulation of Na(+)-K(+)-ATPase. In vivo studies confirmed the importance of cAMP-mediated stimulation of sinusoidal GSH efflux as it resulted in significant elevation of the plasma GSH level.  相似文献   

4.
Diphenyleneiodonium (DPI) is a broad-spectrum flavoprotein inhibitor commonly used to inhibit oxidant production by the NADPH oxidase of phagocytic and nonphagocytic cells. A previous study has shown that DPI can sensitize T24 bladder carcinoma cells to Fas-mediated apoptosis. We observed DPI to deplete intracellular reduced glutathione (GSH) in T24 cells and a range of other primary and transformed cell types. The effect was immediate, with 50% loss of intracellular GSH within 2 h of treatment with DPI. The glutathione was quantitatively recovered in the extracellular medium, indicating that efflux was occurring. The loss of GSH was blocked with bromosulfophthalein, an inhibitor of the canalicular GSH transporters. We conclude that DPI induces a dramatic efflux of cellular GSH from T24 cells via a specific transport channel. This provides a potential mechanism for its proapoptotic effect, and it also has important implications for the regulation of glutathione homeostasis in cells.  相似文献   

5.
Efflux of glutathione (GSH) and GSH-conjugates from cultured rat liver epithelial cell lines; the non-tumorigenic ARL-15C1 and the -glutamyl transpeptidase containing, tumorigenic ARL-16T2, has been assessed under basal condition and during chronic treatment with 75 and 150 M ethacrynic acid (EA). The intracellular level of GSH increased in proportion to EA concentration during chronic exposure. The rates of GSH and GSH-EA conjugate efflux increased with intracellular GSH in both ARL cell lines.Glutathione-S-transferase activity measured with EA as substrate increased over the experimental time course after treatment with 150, but not 75 M EA. When intracellular GSH content was increased by treatment with the cysteine pro-drug, 2-L-oxothiazolidine 4-carboxylic acid, the rate of GSH efflux was increased, but not the rate of GS-EA conjugate export. Inhibition of -glutamyl transpeptidase by acivicin (AT-125) increased the GSH and GS-EA conjugate efflux rate in ARL-16T2 cells by factors of approximately 2 and 15, respectively. Acivicin treatment of ARL-16T2 cells chronically treated with EA elevated GSH efflux rate by 10-fold and GS-EA efflux by 40-fold versus control samples. These studies show that GSH and GSH conjugate efflux are accomplished as independently regulated processes. Efflux of GSH is enhanced by increased in racellular GSH, but increase in the conjugate transport rate requires the presence of the GSH conjugate. The response of the efflux process to treatment with a chronic GSH depleting agent was identical in two cell lines in which the metabolic fate of glutathione is known to differ fundamentally.Abbreviations GSH reduced glutathione - GSSG oxidized glutathione - GS-EA the glutathione conjugate of ethacrynic acid - EA ethacrynic acid - CDNB 1-chloro 2,4-dinitrobenzene - HBS HEPES buffered saline - OTC 2-L-oxothiazolidine 4-carboxylic acid - CYSSG cysteinyl-glutathione mixed disulfide - FDNB 1-fluoro-2,4-dinitrobenzene - GCS -glutamyl cysteine synthetase - GST glutathione-S-transferase - BCA bicinchoninic acid - SDS sodium dodecyl sulfate - PCA perchloric acid  相似文献   

6.
A mechanistic study was performed to elucidate the biochemical events connected with the cocarcinogenic effect of sulfur dioxide (SO2). Glutathione S-sulfonate (GSSO3H), a competitive inhibitor of the glutathione S-transferases, forms in lung cells exposed in culture to sulfite, the hydrated form of SO2. Changes in glutathione status (total GSH) were also observed during a 1-h exposure. Some cells were pretreated with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to inhibit glutathione reductase. In human lung cells GSSO3H formed in a concentration-dependent manner, while glutathione (GSH) increased and glutathione disulfide (GSSG) decreased as the extracellular sulfite concentration was increased from 0 to 20 mM. The ratio of GSH/GSSG increased greater than 5-fold and the GSH/GSSO3H ratio decreased to 10 with increasing sulfite concentration. GSSO3H formed in rat lung cells exposed to sulfite, with no detectable effect on GSH and GSSG. GSSO3H also formed from cellular GSH mixed disulfides. GSSO3H formed rapidly, reaching its maximum value in 15 min. The viability of both cell types was unaffected except at 20 mM sulfite. GSSO3H incubated with human lung cells did not affect cellular viability. BCNU inhibited cellular GSSO3H reductase to the same extent as GSSG reductase. These results indicate that GSSO3H is formed in cells exposed to sulfite, and could be the active metabolite of sulfite responsible for the cocarcinogenic effect of SO2 by inhibiting conjugation of electrophiles by GSH.  相似文献   

7.
In diabetes, cell death and resultant cardiomyopathy have been linked to oxidative stress and depletion of antioxidants like glutathione (GSH). Although the de novo synthesis and recycling of GSH have been extensively studied in the chronically diabetic heart, their contribution in modulating cardiac oxidative stress in acute diabetes has been largely ignored. Additionally, the possible contribution of cellular efflux in regulating GSH levels during diabetes is unknown. We used streptozotocin to make Wistar rats acutely diabetic and after 4 days examined the different processes that regulate cardiac GSH. Reduction in myocyte GSH in diabetic rats was accompanied by increased oxidative stress, excessive reactive oxygen species, and an elevated apoptotic cell death. The effect on GSH was not associated with any change in either synthesis or recycling, as both gamma-glutamylcysteine synthetase gene expression (responsible for bio syn thesis) and glutathione reductase activity (involved with GSH recycling) remained unchanged. However, gene expression of multidrug resistance protein 1, a transporter implicated in effluxing GSH during oxidative stress, was elevated. GSH conjugate efflux mediated by multidrug resistance protein 1 also increased in diabetic cardiomyocytes, an effect that was blocked using MK-571, a specific inhibitor of this transporter. As MK-571 also decreased oxidative stress in diabetic cardiomyocytes, an important role can be proposed for this transporter in GSH and reactive oxygen species homeostasis in the acutely diabetic heart.  相似文献   

8.
Electrophilic cyclopentenone prostaglandins (cyPGs), such as 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), initiate redox-based cell signaling responses including increased intracellular glutathione (GSH) synthesis. We investigated whether cyPGs facilitated GSH efflux and if members of the ATP-binding cassette (ABC) protein family mediated the efflux. Four human cell lines were treated with 1–6 μM cyPGs for 48 h. Media and cells were harvested for GSH measurements using HPLC-EC. CyPG treatment increased extracellular GSH levels two- to threefold over controls in HN4 and C38 cells and five- to sixfold in SAEC and MDA 1586 cells and was dependent on increased GSH synthesis. Our studies show that prostaglandin D2 and its metabolites, prostaglandin J2 and 15dPGJ2, specifically induce GSH efflux compared to other eicosanoids. These higher extracellular GSH levels were associated with protection from tert-butylhydroperoxide. Superarray analysis of ABC transporters suggested only ABCG2 expression had a positive relationship in the four cell types compared with extracellular GSH increases after cyPG treatment. The ABCG2 substrate Hoechst 33342 inhibited extracellular GSH increase after 15dPGJ2 treatment. We report for the first time that ABCG2 may play a role in GSH efflux in response to cyPG treatment and may link inflammatory signaling with antioxidant adaptive responses.  相似文献   

9.
Oxidative stress is caused by imbalance between the production of reactive oxygen species (ROS) and biological system ability to readily detoxify the reactive intermediates or repair the resulting damage. 2-deoxy-D-ribose (dRib) is known to induce apoptosis by provoking an oxidative stress by depleting glutathione (GSH). In this paper, we elucidate the mechanisms underlying GSH depletion in response to dRib treatment. We demonstrated that the observed GSH depletion is not only due to inhibition of synthesis, by inhibiting gamma-glutamyl-cysteine synthetase, but also due to its increased efflux, by the activity of multidrug resistance associated proteins transporters. We conclude that dRib interferes with GSH homeostasis and that likely cellular oxidative stress is a consequence of GSH depletion. Various GSH fates, such as direct oxidation, lack of synthesis or of storage, characterize different kinds of oxidative stress. In the light of our observations we conclude that dRib does not induce GSH oxidation but interferes with GSH synthesis and storage. Lack of GSH allows accumulation of ROS and cells, disarmed against oxidative insults, undergo apoptosis.  相似文献   

10.
The increased expiration of ethane and pentane by mice treated with hepatotoxic doses of acetaminophen suggests the possibility of oxidant mechanisms associated with the necrosis. However, studies in rats are not consistent with oxidant stress mechanisms causing the damage, because acetaminophen given to rats does not increase GSSG efflux, a sensitive index of intrahepatic oxidant stress. To compare the extent of oxidant stress generated by acetaminophen in mice versus rats, hepatic content and biliary efflux of GSSG and GSH in mice have been examined. Bile was collected from anesthetized male ICR mice before and after intraperitoneal administration of acetaminophen (325 mg/kg, 2.15 mmol/kg), t-butyl hydroperoxide (TBHP) (1.5 mmol/kg), diethyl maleate (400 mg/kg, 2.33 mmol/kg, in corn oil) or saline (control) and GSH and GSSG were measured by the enzymatic recycling method of Tietze. An increase in biliary GSSG efflux was produced by t-butyl hydroperoxide, but not by the other agents. Biliary GSH/GSSG ratios decreased in acetaminophen-treated animals, presumably reflecting the marked depletion of hepatic GSH, since a similar decrease was observed with non-hepatotoxic doses of diethyl maleate. The failure of acetaminophen to increase the hepatic content or biliary efflux of GSSG in ICR mice is not consistent with the view that oxidant stress mechanisms cause the damage, despite the increases in alkanes expired after acetaminophen administration in this specific animal model.  相似文献   

11.
The aim of this study was to investigate mechanisms responsible for the inhibition of biliary glutathione efflux in rats with secondary biliary cirrhosis. Rats were studied after bile duct obstruction for 28 days. The biliary secretion of reduced glutathione (GSH), oxidised glutathione (GSSG) and cysteine were completely inhibited in biliary obstructed rats. Hepatic gamma glutamyltranspeptidase (gamma-GT) activity increased significantly, but following its inhibition by acivicin administration GSH, GSSG and cysteine were still absent in bile. Biliary obstruction resulted in a significant increase of the permeability of the paracellular pathway, as shown by the higher bile/plasma ratio and hepatic clearance of [14C]sucrose. GSH and GSSG were, however, significantly lower in the carotid artery and hepatic vein of obstructed animals and the arteriovenous difference across the liver was reduced. The concentration of GSH was significantly reduced and that of GSSG increased in the liver of obstructed rats. Biliary obstruction induced an increase in the hepatic concentration of cysteine and an inhibition of both gamma glutamylcysteine synthetase and methionine adenosyl transferase activities. Dichlorofluorescein (DCF) and the GSSG/GSH ratio and thiobarbituric acid reactive substances (TBARS) concentration, markers of reactive oxygen species production and lipid peroxidation, respectively, were significantly increased. Our data indicate that increased degradation or blood reflux of glutathione do not participate in the disruption of its secretion into bile and support the view that impairment of glutathione synthesis and oxidative stress could contribute to the decline in biliary glutathione output.  相似文献   

12.
A substantial inhibition (50-70%) of GSH efflux by methionine was demonstrated in hepatocytes isolated from fed rats. Concurrent measurements of intracellular GSH revealed maintenance of a higher concentration in methionine-supplemented cells over the 1-h incubation. Analysis of total GSH suggested that maintenance of higher intracellular GSH by methionine could be quantitatively accounted for by inhibition of GSH efflux rather than by net GSH synthesis. This conclusion was supported by studies with propargylglycine, a potent inhibitor of cysteine synthesis from methionine. Identical results were obtained in incubations containing either propargylglycine and methionine or methionine alone, thereby suggesting that net synthesis of GSH from methionine was minimal under the assay conditions. Similar decreases (40-60%) in the rate of extracellular accumulation of GSH were observed with ethionine and buthionine, two higher homologs of methionine, but not with a wide range of other naturally occurring and synthetic amino acids. The inhibition of GSH efflux by methionine was not dependent on the presence of sodium in the medium and did not correlate with metabolic consumption of ATP.  相似文献   

13.
Since moderate hyperhomocysteinemia is an independent risk factor for vascular disease by mean of its oxidant effect and glutathione plays a main role as intracellular redox-regulating agent, we have studied for the first time the total intracellular content of homocysteine in aging. Plasma homocysteine concentration, total intracellular and plasma glutathione, and other related thiol compounds such as cysteine and the glutathione catabolite cysteinglycine were also studied. Forty three healthy elderly subjects and twenty seven healthy young ones were studied. The total intracellular peripheral blood mononuclear cell content was higher for homocysteine, cysteine and cysteinglycine, whereas that of the total glutathione was greatly decreased in elderly people with respect to young ones. Elderly subjects showed significantly higher levels than young ones of total plasma homocysteine and cysteinglycine, but not cysteine, whereas total plasma glutathione levels were increased. In addition, elderly subjects showed significantly decreased plasma vitamin E levels and increased concentrations of serum lipid peroxides measured as TBARS (reaction product of malondialdehyde with thiobarbituric acid). The intracellular glutathione content presented significantly negative correlation with serum TBARS, and intracellular and plasma homocysteine levels. These findings show an increase of homocysteine synthesis associated with aging, which in turn can produce an augmented oxidant effect on endothelium, and an impaired intracellular antioxidant capacity leading to an enhanced lipid peroxidation and decreased total intracellular glutathione content.  相似文献   

14.
Effects of cyclosporin A on model lipid membranes   总被引:3,自引:0,他引:3  
Cyclosporin A (CSA) is a widely used immunosuppressant drug for transplant therapy, however its limitation is its toxicity. The effect of CSA on model membranes such as dimyristoyl phosphatidylcholine (DMPC) bilayers was studied using small-angle X-ray diffraction and differential scanning calorimetry (DSC). CSA abolishes the pretransition and affects the transition of DMPC model membranes in a concentration-related manner as is shown by DSC. CSA induces a second peak at the high temperature side of the main transition, which is interpreted as a phase separation between areas rich and poor in CSA concentration. Small angle X-ray diffraction shows that the repeat distance of the DMPC bilayers in the lamellar Lalpha state increases as a function of concentration up to 10 mol% and remains constant thereafter. Furthermore, CSA affects the fatty acyl chains of the bilayer, especially the part of the chain proximal to the head group. In conclusion, CSA, as both small-angle X-ray diffraction and DSC show, affects in a concentration-wise manner the DMPC model membranes and perturbs the bilayer, in particular the acyl chain region.  相似文献   

15.
4-Nitroquinoline 1-oxide (NQO) is a reactive electrophile with potent cytotoxic as well as genotoxic activities. NQO forms a conjugate, QO-SG, with glutathione, which greatly reduces its chemical reactivity. Previous studies demonstrated that glutathione S-transferase (GST) P1a-1a and multidrug resistance protein (MRP) 1/2 act in synergy to confer resistance to both cyto- and genotoxicities of NQO, whereas protection afforded by GSTP1a-1a or MRP alone was much less. To better understand the role of glutathione, GSTP1a-1a, and MRP1 in NQO detoxification, we have characterized the kinetics and cofactor requirements of MRP1-mediated transport of QO-SG and NQO. Additionally, using recombinant GSTP1a-1a and physiological conditions, we have examined the enzymatic and nonenzymatic formation of QO-SG. Results show that MRP1 supports efficient transport of QO-SG with a K(m) of 9.5 microM and a V(max) comparable to other good MRP1 substrates. Glutathione or its S-methyl analogue enhanced the rate of (3)H-QO-SG transport, whereas QO-SG inhibited the rate of (3)H-glutathione transport. These data favor a mechanism for glutathione-enhanced, MRP1-mediated QO-SG transport that does not involve cotransport of glutathione. NQO was not transported by MRP1 either alone or in the presence of S-methyl glutathione. Transport of (3)H-NQO was observed in the presence of glutathione, but uptake into MRP1-containing vesicles was entirely attributable to its conjugate, QO-SG, formed nonenzymatically. While the nonenzymatic rate was readily measurable, enzyme catalysis was overwhelmingly dominant in the presence of GSTP1a-1a (rate enhancement factor, (k(cat)/K(m))/k(2), approximately 3 x 10(6)). We conclude that MRP1 supports detoxification of NQO via efficient, glutathione-stimulated efflux of QO-SG. While nonenzymatic QO-SG formation and MRP1-mediated conjugate efflux result in low-level protection from cyto- and genotoxicities, this protection is greatly enhanced by coexpression of GSTP1-1 with MRP1. This result emphasizes the quantitative importance of enzyme-catalyzed conjugate formation, a crucial determinant of high-level, MRP-dependent protection of cells from NQO toxicity.  相似文献   

16.
Erythrocytes are both an important source and target of reactive oxygen species in sickle cell disease. Levels of glutathione, a major antioxidant, have been shown to be decreased in sickle erythrocytes and the mechanism leading to this deficiency is not known yet. Detoxification of reactive oxygen species involves the oxidation of reduced glutathione (GSH) into glutathione-disulfide (GSSG) which is actively transported out of erythrocyte. We questioned whether under oxidative conditions, GSSG efflux is increased in sickle erythrocytes. Erythrocytes of 18 homozygous sickle cell patients and 9 race-matched healthy controls were treated with 2,3-dimethoxy-l,4-naphthoquinone, which induces intracellular reactive oxygen species generation, to stimulate GSSG production. Intra- and extracellular concentrations of GSH and GSSG were measured at baseline and during 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation. While comparable at baseline, intracellular and extracellular GSSG concentrations were significantly higher in sickle erythrocytes than in healthy erythrocyte after 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation (69.9 ± 3.7 μmol/l vs. 40.6 ± 6.9 μmol/l and 25.8 ± 2.7 μmol/l vs. 13.6 ± 1.7 μmol/l respectively, P<0.002). In contrast to control erythrocytes, where GSH concentrations remained unchanged (176 ± 8.4 μmol/l vs. 163 ± 13.6 μmol/l, NS), GSH in sickle erythrocytes decreased significantly (from 167 ± 8.8 μmol/l to 111 ± 11.8 μmol/l, P<0.01) after 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation. Adding multidrug resistance-associated protein-1 inhibitor (MK571) to erythrocytes blocked GSSG efflux in both sickle and normal erythrocytes. GSSG efflux, mediated by multidrug resistance-associated protein-1, is increased in sickle erythrocytes, resulting in net loss of intracellular glutathione and possibly higher susceptibility to oxidative stress.  相似文献   

17.
A T Davenport  C A Hodson 《Life sciences》1992,50(14):1001-1006
The effect of cyclosporin A (CsA) treatment on LH and prolactin was investigated. Chronic daily administration of an immunosuppressive dose of CsA (1.5 mg/100g bw) increased serum LH concentrations and pituitary gland LH content. CsA treatment also resulted in increased serum testosterone. Immunosuppressive doses of CsA had no effect on serum prolactin or pituitary gland prolactin content. Acute administration of low doses of 0.12, 1.2, 12 and 120ug CsA/100g bw had no effect on serum LH or prolactin. These results suggest that administration of immunosuppressive doses of CsA alters serum and pituitary LH and serum testosterone but not prolactin.  相似文献   

18.
N-Methyl-d-aspartate (NMDA)-receptor stimulation evoked a selective and partly delayed elevated efflux of glutathione, phosphoethanolamine, and taurine from organotypic rat hippocampus slice cultures. The protein kinase inhibitors H9 and staurosporine had no effect on the efflux. The phospholipase A2 inhibitors quinacrine and 4-bromophenacyl bromide, as well as arachidonic acid, a product of phospholipase A2 activity, did not affect the stimulated efflux. Polymyxin B, an antimicrobal agent that inhibits protein kinase C, and quinacrine in high concentration (500 µM), blocked efflux completely. The stimulated efflux after but not during NMDA incubation was attenuated by a calmodulin antagonist (W7) and an anion transport inhibitor (DNDS). Omission of calcium increased the spontaneous efflux with no or small additional effects by NMDA. In conclusion, NMDA receptor stimulation cause an increased selective efflux of glutathione, phosphoethanolamine and taurine in organotypic cultures of rat hippocampus. The efflux may partly be regulated by calmodulin and DNDS sensitive channels.  相似文献   

19.
A host of abnormalities of renal structure and function accompany advancing age. This presentation briefly surveys the renal anatomical and functional changes associated with senescence. Four areas of renal functional change have been selected for in-depth discussion: a) renal blood flow; b) glomerular filtration rate; c) renal sodium handling; and d) renal concentrating ability. The methodologic considerations including population selection which confound the assessment of the effects of aging on renal function are discussed. In addition, the functional changes associated with senescence are discussed in the context of longitudinal studies and studies utilizing appropriate patient cohorts, including potential kidney transplant donors. The clinical implications of senescent changes with regard to adjusting "normative" standards to fit the age of the patient are addressed. Furthermore, the implications of age-related renal functional alterations in predisposing the elderly patient to a number of fluid and electrolyte derangements are considered.--Epstein, M. Effects of aging on the kidney.  相似文献   

20.
Young adult Wistar rats received 40 mg/kg of cyclosporin perorally for 21 days. Cyclosporin induced almost total disappearance of thymic medulla, whereas the cortex remained preserved. Although the density of cortical macrophages did not change significantly, their characteristics altered markedly and they became enlarged and rounded. In addition to an increase in acid phosphatase and nonspecific esterase activities, cortical macrophages developed very strong succinic dehydrogenase and chloroacetate esterase activities and a fine, granular, aldehyde fuchsinpositive cytoplasmic content. However, these cytoplasmic granules were PAS-negative and were not sudanophilic. Cortical macrophages retained their normal antigenic properties (which were studied by the use of ED1, ED2 and R-MC 41 monoclonal antibodies). Phagocytic cells in the remaining medullary islands retained their usual characteristics. The changes in cortical macrophages after cyclosporin treatment are discussed, especially in relation to the characteristics of macrophages of the cortico-medullary zone in the normal rat thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号