首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Unisexual salamanders of the genus Ambystoma exemplify the most ancient lineage of unisexual vertebrates and demonstrate an extremely flexible reproductive system. Unisexual Ambystoma interact with and incorporate genomes from two to four sexual species (A. laterale, A. jeffersonianum, A. texanum, and A. tigrinum), to generate more than 20 genome compositions or biotypes. Unisexual ploidy levels range from diploid to pentaploid, but all contain at least one A. laterale (L) genome. Replacement of nuclear genomes might be responsible for the evolutionary longevity of unisexual Ambystoma but direct evidence for the prevalence of genome replacement in natural populations is absent. Two major puzzling questions have remained unanswered over the last few decades: 1) is genome replacement a common reproductive method in various unisexual populations and, 2) is there an ancient "L" genome that persists in various unisexual genome compositions.  相似文献   

2.
The geographical range of unisexual Ambystoma overlaps with four bisexual species that also breed in spring ponds. Several of these species are of conservation concern, and both adults and larvae can be difficult to distinguish morphologically from unisexuals. Here we present a rapid molecular method for screening unisexuals, whose mtDNA is most similar to Ambystoma barbouri. A 258 bp segment of the cytochrome b gene was amplified in six Ambystoma species and exemplar unisexuals by PCR using taxon-specific primers. An internal 113 bp segment was amplified only in unisexuals and A. barbouri using Universal forward and Hybrid reverse primers. Multisequence alignment comparing the nucleotide sequence where Hybrid reverse primer anneals revealed nucleotide diversity in this region among Ambystoma species. This simple method for discriminating between unisexuals and bisexuals, excluding A. barbouri, can be applied prior to further research on these declining species.  相似文献   

3.
Unisexual (all female) salamanders in the genus Ambystoma are animals of variable ploidy (2N‐5N) that reproduce via a unique system of ‘leaky’ gynogenesis. As a result, these salamanders have a diverse array of nuclear genome combinations from up to five sexual species: the blue‐spotted (A. laterale), Jefferson (A. jeffersonianum), smallmouth (A. texanum), tiger (A. tigrinum) and streamside (A. barbouri) salamanders. Identifying the genome complement, or biotype, is a critical first step in addressing a broad range of ecological and evolutionary questions about these salamanders. Previous work relied upon genome‐related differences in allele size distributions for specific microsatellite loci, but overlap in these distributions among different genomes makes definitive identification and ploidy determination in unisexuals difficult or impossible. Here, we develop the first single nucleotide polymorphism assay for the identification of unisexual biotypes, based on species‐specific nucleotide polymorphisms in noncoding DNA loci. Tests with simulated and natural unisexual DNA samples show that this method can accurately identify genome complement and estimate ploidy, making this a valuable tool for assessing the genome composition of unisexual samples.  相似文献   

4.

Background  

The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available.  相似文献   

5.
6.
Cryptic sex has been argued to explain the exceptional longevity of certain parthenogenetic vertebrate lineages, yet direct measurements of genetic exchange between sexual and apparently parthenogenetic forms are rare. Female unisexual mole salamanders (Ambystoma sp.) are the oldest known unisexual vertebrate lineage (~5 million years), and one hypothesis for their persistence is that allopolyploid female unisexuals periodically exchange haploid genomes ‘genome exchange’ during gynogenetic reproduction with males from sympatric sexual species. We test this hypothesis by using genome‐specific microsatellite DNA markers to estimate the rates of genome exchange between sexual males and unisexual females in two ponds in NE Ohio. We also test the prediction that levels of gene flow should be higher for ‘sympatric’ (sexual males present) genomes in unisexuals compared to ‘allopatric’ (sexual males absent) unisexual genomes. We used a model testing framework in the coalescent‐based program MIGRATE‐N to compare models where unidirectional gene flow is present and absent between sexual species and unisexuals. As predicted, our results show higher levels of gene flow between sexuals and sympatric unisexual genomes compared to lower (likely artefactual) levels of gene flow between sexuals and allopatric unisexual genomes. Our results provide direct evidence that genome exchange between sexual and unisexual Ambystoma occurs and demonstrate that the magnitude depends on which sexual species are present. The relatively high levels of gene flow suggest that unisexuals must be at a selective advantage over sexual forms so as to avoid extinction due to genetic swamping through genome exchange.  相似文献   

7.

Background  

Soybean lipoxygenases (Lxs) play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago.  相似文献   

8.
Honckenya peploides is a subdioecious dune plant that reproduces both sexually and by clonal growth. In northwest Spain this species was found to exhibit an extreme spatial segregation of the sexes, and our objective was to investigate genetic variation in unisexual clumps. Genetic variation was studied in six unisexual clumps of H. peploides, three of them exclusively composed of males and three exclusively female. In total, 193 samples were analysed using isozyme analysis and 80 samples were analysed using two AFLP primer combinations. Both techniques revealed considerably high genetic diversity (average proportion of distinguishable genotypes: 0.22 for isozymes and 0.36 for AFLP; average Simpson’s D: 0.65 for isozymes and 0.68 for AFLP). Our results show that, in spite of clonal growth, each unisexual clump consists of different genotypes. Genetic diversity within clumps is similar for both sexual morphs. Reasons for unisexuality of the clumps are discussed.  相似文献   

9.

Background  

The fungus-growing ant-microbe symbiosis consists of coevolving microbial mutualists and pathogens. The diverse fungal lineages that these ants cultivate are attacked by parasitic microfungi of the genus Escovopsis. Previous molecular analyses have demonstrated strong phylogenetic congruence between the ants, the ants-cultivated fungi and the garden pathogen Escovopsis at ancient phylogenetic levels, suggesting coevolution of these symbionts. However, few studies have explored cophylogenetic patterns between these symbionts at the recent phylogenetic levels necessary to address whether these parasites are occasionally switching to novel hosts or whether they are diversifying with their hosts as a consequence of long-term host fidelity.  相似文献   

10.

Background  

Pelobacter carbinolicus, a bacterium of the family Geobacteraceae, cannot reduce Fe(III) directly or produce electricity like its relatives. How P. carbinolicus evolved is an intriguing problem. The genome of P. carbinolicus contains clustered regularly interspaced short palindromic repeats (CRISPR) separated by unique spacer sequences, which recent studies have shown to produce RNA molecules that interfere with genes containing identical sequences.  相似文献   

11.

Background  

The sweet, floral flavor typical of Muscat varieties (Muscats), due to high levels of monoterpenoids (geraniol, linalool and nerol), is highly distinct and has been greatly appreciated both in table grapes and in wine since ancient times. Muscat flavor determination in grape (Vitis vinifera L.) has up to now been studied by evaluating monoterpenoid levels through QTL analysis. These studies have revealed co-localization of 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS) with the major QTL positioned on chromosome 5.  相似文献   

12.
The allogamous raphid diatom Achnanthes longipes C. A. Agardh possesses a complex breeding system involving interactions between three types of clone: monoecious, unisexual and bisexual. Previous studies showed that these three types can be crossed with each other, with a tendency for sexual characteristics to be inherited: inbred monoecious lineages gave rise to monoecious or, very rarely, to bisexual clones, while inbred unisexual lineages yielded unisexual and bisexual clones. The current paper reports on the progeny of crosses between monoecious and unisexual clones and their inbred offspring. All three types of clone appeared in the F1 and F2, although unisexual clones of opposite sex to the parental clone were not found. Inbreeding depression was observed and also a tendency for ‘normal’ auxosporulation (producing two auxospores per pair of gametangia) to be replaced by ‘reduced’ or ‘intermediate’ auxosporulation (producing one auxospore per pair). In addition, patterns of incompatibility were observed that were not seen during earlier studies of clones isolated directly from nature. These included the inability of some F1 clones to mate with each other, in spite of compatibility with all other clones examined (unisexual, bisexual and monoecious).  相似文献   

13.

Background  

Evolution of unisexual flowers entails one of the most extreme changes in plant development. Cultivated spinach, Spinacia oleracea L., is uniquely suited for the study of unisexual flower development as it is dioecious and it achieves unisexually by the absence of organ development, rather than by organ abortion or suppression. Male staminate flowers lack fourth whorl primordia and female pistillate flowers lack third whorl primordia. Based on theoretical considerations, early inflorescence or floral organ identity genes would likely be directly involved in sex-determination in those species in which organ initiation rather than organ maturation is regulated. In this study, we tested the hypothesis that sexual dimorphism occurs through the regulation of B class floral organ gene expression by experimentally knocking down gene expression by viral induced gene silencing.  相似文献   

14.

Background  

DNA sequences afford access to the evolutionary pathways of life. Particularly mobile elements that constantly co-evolve in genomes encrypt recent and ancient information of their host's history. In mammals there is an extraordinarily abundant activity of mobile elements that occurs in a dynamic succession of active families, subfamilies, types, and subtypes of retroposed elements. The high frequency of retroposons in mammals implies that, by chance, such elements also insert into each other. While inactive elements are no longer able to retropose, active elements retropose by chance into other active and inactive elements. Thousands of such directional, element-in-element insertions are found in present-day genomes. To help analyze these events, we developed a computational algorithm (Transpositions in Transpositions, or TinT) that examines the different frequencies of nested transpositions and reconstructs the chronological order of retroposon activities.  相似文献   

15.
Unisexual salamanders in the genus Ambystoma live in obligate sympatry with the sexual species Ambystoma laterale or Ambystoma jeffersonianum, from which they are not easily distinguished. Because the sexual species are protected in many parts of their range, accurate identification of sexual and unisexual individuals is required for conservation purposes. Unisexual individuals are currently identified using isozyme electrophoresis, which requires sacrificing the animal. Here we present a nonlethal method of identification for members of the A. laterale–jeffersonianum part of the Ambystoma complex utilizing genome‐specific microsatellites with or without the addition of flow cytometry.  相似文献   

16.
17.

Background  

Molecular studies have revealed that many putative 'species' are actually complexes of multiple morphologically conservative, but genetically divergent 'cryptic species'. In extreme cases processes such as non-adaptive diversification (speciation without divergent selection) could mask the existence of ancient lineages as divergent as ecologically and morphologically diverse radiations recognised as genera or even families in related groups. The identification of such ancient, but cryptic, lineages has important ramifications for conservation, biogeography and evolutionary biology. Herein, we use an integrated multilocus genetic dataset (allozymes, mtDNA and nuclear DNA) to test whether disjunct populations of the widespread nominal Australian gecko species Crenadactylus ocellatus include distinct evolutionary lineages (species), and to examine the timing of diversification among these populations.  相似文献   

18.

Background  

Host-parasite coevolution can result in balancing selection, which maintains genetic variation in the susceptibility of hosts to parasites. It has been suggested that variation in a thioester-containing protein called TEP1 (AGAP010815) may alter the ability of Anopheles mosquitoes to transmit Plasmodium parasites, and high divergence between alleles of this gene suggests the possible action of long-term balancing selection. We studied whether TEP1 is a case of an ancient balanced polymorphism in an animal immune system.  相似文献   

19.

Background  

The Notostraca is a small but ancient crustacean order with a contrasting combination of a conservative morphology and a wide range of reproductive modes. The tadpole shrimp Triops cancriformis, includes bisexual – the putatively ancestral state -, androdioecious and hermaphrodite populations. As hermaphroditism and androdioecy confer a colonisation advantage, we expect the postglacial colonisation of northern Europe to have been effected by lineages with such reproductive modes. Therefore, N European populations should be composed of closely related lineages reflecting a recent range expansion. In contrast, glacial refugia in the south should contain bisexual populations with high haplotype diversity and more population structuring. To test these hypotheses, we analysed the geographic distribution of reproductive modes based on new and published sex ratio data. In addition, we investigated the European phylogeography of T. cancriformis by sequencing over a 1000 bp of mitochondrial DNA (mtDNA) in individuals from a large sample of populations of the three recognised subspecies.  相似文献   

20.

Background  

Bacillus anthracis has two major virulence factors: a tripartite toxin that produces lethal and edema toxins and a polyglutamic acid capsule. A recent report suggested that a toxin belonging to the cholesterol dependant cytolysin (CDC) family, anthrolysin O (ALO) was a new virulence factor for B. anthracis but subsequent studies have questioned its relevance in pathogenesis. In this study, we examined the immunogenicity of recombinant anthrolysin O (rALO) in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号