首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous production of xylanase and pectinase by Bacillus pumilus AJK under submerged fermentation was investigated in this study. Under optimized conditions, it produced 315?±?16 IU/mL acidic xylanase, 290?±?20 IU/mL alkaline xylanase, and 88?±?9 IU/mL pectinase. The production of xylano-pectinolytic enzymes was the highest after inoculating media (containing 2% each of wheat bran and Citrus limetta peel, 0.5% peptone, 10?mM MgSO4, pH 7.0) with 2% of 21-hr-old culture and incubated at 37°C for 60?hr at 200?rpm. Xylanase retained 100% activity from pH 6.0 to10.0 after 3?hr of incubation, while pectinase showed 100% stability from pH 6.0 to 9.0 even after 6?hr of incubation. Cost-effective and concurrent production of xylanase and pectinase by a bacterial isolate in the same production media suggests its potential for various biotechnological applications. This is the first report of simultaneous production of industrially important extracellular xylano-pectinolytic enzymes by B. pumilus.  相似文献   

2.
A newly isolated anti-Streptococcus suis bacteriocin-producing strain LPL1-5 was obtained from healthy unweaned piglets' fecal matter, and was designated as Lactobacillus pentosus LPL1-5 based on morphology, biochemical properties, and 16S rDNA sequencing analysis. The medium composition for enhanced bacteriocin production by L. pentosus LPL1-5 was optimized by statistical methodology. Yeast extract, K2HPO4 · 3H2O, and MnSO4 · H2O were identified as significant components influencing pentocin LPL1-5 production using the Plackett–Burman method. Response surface methodology was applied for further optimization. The concentrations of medium components for enhanced pentocin LPL1-5 production were as follows (g/L): lactose 20.00, tryptone 10.00, beef extract 10.00, yeast extract 14.00, MnSO4 · H2O 0.84, K2HPO4 · 3H2O 4.92, triammonium citrate 2.00, Na-acetate 5.00, MgSO4 · 7H2O 0.58, Tween 80 1.00. Under the optimized condition, a value of 3154.65 ± 27.93 IU/mL bacteriocin activity was achieved, which was 4.2-fold that of the original medium.  相似文献   

3.
Optimization of the medium components which enhance sporulation of the two mating types of the fungus Blakeslea trispora ATCC 14271 and ATCC 14272 (a heterothallic Zygomycota producing carotene) was achieved with the aid of response surface methodology (RSM). Glucose, corn steep liquor, yeast extract, and ammonium sulfate were investigated as carbon and nitrogen sources in a basal medium. RSM was adopted to optimize the medium in order to obtain a good growth of the fungus as a prerequisite for enhanced sporulation. In the second step, the basal medium was supplemented with different trace elements which significantly affect sporulation (i.e. CuSO4·5H2O, FeCl3·6H2O, Co(NO3)2·6H2O, and MnCl2·4H2O). Central composite design proved to be valuable in optimizing a chemically defined solid medium for spore production of B. trispora. The composition of the new solid medium to enhance spore production by B. trispora (ATCC 14271) is as follows (per liter): 7.5 g glucose, 3.2 g corn steep liquor, 1.7 g yeast extract, 4.1 g ammonium sulfate, 6 mg CuSO4·5H2O, 276 mg FeCl3·6H2O, 2 mg Co(NO3)2·6H2O, and 20 g agar (pH 6.0). Practical validation of this optimum medium gave spore number of 1.2 × 108 spores/dish which is 77% higher than that produced in Potato Dextrose Agar (PDA). In the case of B. trispora (ATCC 14272) the new solid substrate for enhanced sporulation consists of (per l) 6.4 g glucose, 3.3 g corn steep liquor, 1.4 g yeast extract, 4.3 g ammonium sulfate, 264 mg CuSO4·5H2O, 485 mg FeCl3·6H2O, 223 mg MnCl2.4H2O, and 20 g agar (pH 6.0). Spore numbers of 2 × 107 spores/dish were obtained on the new medium by B. trispora (ATCC 14272), which is 95% higher than that produced on PDA. The results corroborated the validity and the effectiveness of the models. The new media considerably improved sporulation of both strains of B. trispora compared to the production of spores on PDA, which is the medium usually used for sporulation of the fungus.  相似文献   

4.
In order to overproduce biofungicides agents by Bacillus amyloliquefaciens BLB371, a suitable culture medium was optimized using response surface methodology. Plackett–Burman design and central composite design were employed for experimental design and analysis of the results. Peptone, sucrose, and yeast extract were found to significantly influence antifungal activity production and their optimal concentrations were, respectively, 20 g/L, 25 g/L, and 4.5 g/L. The corresponding biofungicide production was 250 AU/mL, corresponding to 56% improvement in antifungal components production over a previously used medium (160 AU/mL). Moreover, our results indicated that a deficiency of the minerals CuSO4, FeCl3 · 6H2O, Na2MoO4, KI, ZnSO4 · 7H2O, H3BO3, and C6H8O7 in the optimized culture medium was not crucial for biofungicides production by Bacillus amyloliquefaciens BLB371, which is interesting from a practical point of view, particularly for low-cost production and use of the biofungicide for the control of agricultural fungal pests.  相似文献   

5.
Lovastatin, an inhibitor of HMG-CoA reductase, was produced by submerged fermentation using Monascus purpureus MTCC 369. Five nutritional parameters screened using Plackett–Burman experimental design were optimized by Box–Behnken factorial design of response surface methodology for lovastatin production in shake flask cultures. Maximum lovastatin production of 351 mg/l were predicted in medium containing 29.59 g/l dextrose, 3.86 g/l NH4Cl, 1.73 g/l KH2PO4, 0.86 g/l MgSO4·7H2O, and 0.19 g/l MnSO4·H2O using response surface plots and point prediction tool of DESIGN EXPERT 7.0 (Statease, USA) software.  相似文献   

6.
A fermentation medium for avilamycin production by Streptomyces viridochromogenes Tü57-1 has been optimized. Important components and their concentrations were investigated using fractional factorial design and Box–Behnken Design. The results showed that soybean flour, soluble starch, MgSO4·7H2O and CaCl2·2H2O are important for avilamycin production. A polynomial model related to medium components and avilamycin yield had been established. A high coefficient of determination (R 2 = 0.92) was obtained that indicated good agreement between the experimental and predicted values of avilamycin yield. Student’s T-test of each coefficient showed that all the linear and quadratic terms had significant effect (P > |T| < 0.05) on avilamycin yield. The significance of tested components was related to MgSO4·7H2O (0.37 g/L), CaCl2·2H2O (0.39 g/L), soybean flour (21.97 g/L) and soluble starch (37.22 g/L). The yield of avilamycin reached 88.33 ± 0.94 mg/L (p < 0.05) that was 2.8-fold the initial yield.  相似文献   

7.
This paper reports the production of a cellulase-free and alkali-stable xylanase in high titre from a newly isolated Bacillus pumilus SV-85S using cheap and easily available agro-residue wheat bran. Optimization of fermentation conditions enhanced the enzyme production to 2995.20 ± 200.00 IU/ml, which was 9.91-fold higher than the activity under unoptimized basal medium (302.2 IU/ml). Statistical optimization using response-surface methodology was employed to obtain a cumulative effect of peptone, yeast extract, and potassium nitrate (KNO3) on enzyme production. A 23 central composite design best optimized the nitrogen source at the 0 level for peptone and yeast extract and at the −α level for KNO3, along with 5.38-fold increase in xylanase activity. Addition of 0.1% tween 80 to the medium increased production by 1.5-fold. Optimum pH for xylanase was 6.0. The enzyme was 100% stable over the pH range from 5 to 11 for 1 h at 37°C and it lost no activity, even after 3 h of incubation at pH 7, 8, and 9. Optimum temperature for the enzyme was 50°C, but the enzyme displayed 78% residual activity even at 65°C. The enzyme retained 50% activity after an incubation of 1 h at 60°C. Characteristics of B. pumilus SV-85S xylanase, including its cellulase-free nature, stability in alkali over a long duration, along with high-level production, are particularly suited to the paper and pulp industry.  相似文献   

8.
Bacillus cereus ZH14 was previously found to produce a new type of antiviral ribonuclease, which was secreted into medium and active against tobacco mosaic virus. In order to enhance the ribonuclease production, in this study the optimization of culture conditions using response surface methodology was done. The fermentation variables including culture temperature, initial pH, inoculum size, sucrose, yeast extract, MgSO4·7H2O, and KNO3 were considered for selection of significant ones by using the Plackett–Burman design, and four significant variables (sucrose, yeast extract, MgSO4·7H2O, and KNO3) were further optimized by a 24 factorial central composite design. The optimal combination of the medium constituents for maximum ribonuclease production was determined as 8.50 g/l sucrose, 9.30 g/l yeast extract, 2.00 g/l MgSO4·7H2O, and 0.62 g/l KNO3. The enzyme activity was increased by 60%. This study will be helpful to the future commercial development of the new bacteria-based antiviral ribonuclease fermentation process.  相似文献   

9.
With the objective of the production of xylanase, local raw material (rice husk) and the indigenous isolate, Aspergillus niger ITCC 7678, were studied. Optimization of the cultivation system for enhancing xylanase production was studied via submerged fermentation. Statistical procedures were employed to study the effect of process variables, such as alkali-pretreated rice husk (as carbon source), NaNO3 (as nitrogen source), KH2PO4, KCl, Tween 80 (as surfactant), MgSO4, FeSO4·7H2O, pH, particle size, agitation, and temperature, on xylanase production by A. niger. The effect and significance of the variables was studied using Plackett–Burman (PBD) and central composite statistical design (CCD). It was found that alkali pretreated rice husk (weight/volume), pH, temperature, and NaNO3 significantly influence xylanase production. So, these four factors were further optimized by CCD, and it was found that maximum xylanase activity of 10.9 IU/ml was observed at (6.5 % w/v) rice husk, pH (5.5), temperature (32.5 °C), and NaNO3 (0.35 % w/v) concentration. Under optimum conditions, xylanase production was also studied at the bioreactor level and showed 12.8 % enhanced xylanase activity.  相似文献   

10.
The freshwater microalga Haematococcus pluvialis is one of the best microbial sources of the carotenoid astaxanthin, but this microalga shows low growth rates and low final cell densities when cultured with traditional media. A single-variable optimization strategy was applied to 18 components of the culture media in order to maximize the productivity of vegetative cells of H. pluvialis in semicontinuous culture. The steady-state cell density obtained with the optimized culture medium at a daily volume exchange of 20% was 3.77 · 105 cells ml−1, three times higher than the cell density obtained with Bold basal medium and with the initial formulation. The formulation of the optimal Haematococcus medium (OHM) is (in g l−1) KNO3 0.41, Na2HPO4 0.03, MgSO4 · 7H2O 0.246, CaCl2 · 2H2O 0.11, (in mg l−1) Fe(III)citrate · H2O 2.62, CoCl2 · 6H2O 0.011, CuSO4 · 5H2O 0.012, Cr2O3 0.075, MnCl2 · 4H2O 0.98, Na2MoO4 · 2H2O 0.12, SeO2 0.005 and (in μg l−1]) biotin 25, thiamine 17.5 and B12 15. Vanadium, iodine, boron and zinc were demonstrated to be non-essential for the growth of H. pluvialis. Higher steady-state cell densities were obtained by a three-fold increase of all nutrient concentrations but a high nitrate concentration remained in the culture medium under such conditions. The high cell productivities obtained with the new optimized medium can serve as a basis for the development of a two-stage technology for the production of astaxanthin from H. pluvialis. Received: 10 September 1999 / Received revision: 2 December 1999 / Accepted: 3 December 1999  相似文献   

11.
Aims: Aim of the study was to develop a medium for optimal heparinase production with a strain of Aspergillus flavus (MTCC‐8654) by using a multidimensional statistical approach. Methods and Results: Statistical optimization of intracellular heparinase production by A. flavus, a new isolate, was investigated. Plackett–Burman design was used to evaluate the affect of medium constituents on heparinase yield. The experimental results showed that the production of heparinase was dependent upon heparin, the inducer; chitin, structurally similar to heparin and NH4NO3, the nitrogen source. A central composite design was applied to derive a statistical model for optimizing the composition of the fermentation medium for the production of heparinase enzyme. The optimum fermentation medium consisted of (g l?1) Mannitol, 8·0; NH4NO3, 2·5; K2HPO4, 2·5; Na2HPO4, 2·5; MgSO4.7H2O, 0·5; Chitin, 17·1; Heparin, 0·6; trace salt solution (NaMoO4.2H2O, CoCl2.6H2O, CuSO4.5H2O, FeSO4.7H2O, CaCl2), 10?4 mol l?1. Conclusions: A 2·37‐fold increase in heparinase production was achieved in economic and effective manner by the application of statistical designs in medium optimization. Significance and Impact of the Study: Heparinase production was doubled by statistical optimization in a cost‐effective manner. This heparinase can find application in pharmaceutical industry and for the generation of low‐molecular‐weight heparins, active as antithrombotic and antitumour agents.  相似文献   

12.
The Doehlert experimental design was used to optimize the production of mycelial biomass and exopolymer from Hericium erinaceus CZ-2 in this study. Statistical analysis showed that the linear and quadric terms of 3 variables: corn flour, yeast extract, and corn steep liquor had significant effects. The optimized combination of these 3 variables was confirmed through validation experiments. The optimal conditions for higher production of mycelial biomass (19.92 g/L) were estimated when the media composition concentrations were set as: 30.85 g/L, corn flour; 2.81 g/L, yeast extract; 16.9 mL/L, corn steep liquor; 10 g/L, glucose; 1 g/L, KH2PO4; and 0.5 g/L, MgSO4·7H2O; while a maximal exo-polymer yield (1.653 g/L) could be achieved when setting concentrations of: 32.71 g/L, corn flour; 2.35 g/L, Yeast extract; 14.42 mL/L, Corn steep liquor; 10 g/L, glucose; 1 g/L, KH2PO4; and 0.5 g/L, MgSO4·7H2O. The upscale production was also investigated using a 15 L fermentor using the optimized medium.  相似文献   

13.
Methylobacillus sp. zju323 was adopted to improve the biosynthesis of pyrroloquinoline quinone (PQQ) by systematic optimization of the fermentation medium. The Plackett–Burman design was implemented to screen for the key medium components for the PQQ production. CoCl2?·?6H2O, ρ-amino benzoic acid, and MgSO4?·?7H2O were found capable of enhancing the PQQ production most significantly. A five-level three-factor central composite design was used to investigate the direct and interactive effects of these variables. Both response surface methodology (RSM) and artificial neural network–genetic algorithm (ANN–GA) were used to predict the PQQ production and to optimize the medium composition. The results showed that the medium optimized by ANN–GA was better than that by RSM in maximizing PQQ production and the experimental PQQ concentration in the ANN–GA-optimized medium was improved by 44.3% compared with that in the unoptimized medium. Further study showed that this ANN–GA-optimized medium was also effective in improving PQQ production by fed-batch mode, reaching the highest PQQ accumulation of 232.0?mg/L, which was about 47.6% increase relative to that in the original medium. The present work provided an optimized medium and developed a fed-batch strategy which might be potentially applicable in industrial PQQ production.  相似文献   

14.
Medium composition was optimized for the production of xylanase byAspergillus niger KK2 using statistical experimental designs. Corn steep liquor (CSL) and industrial yeast extract (IYE) were the most important factors affecting xylanase activity. The medium that produced the optimum conditions for the production of xylanase contained 3% rice straw, 1% wheat bran, 6.3% CSL, 0.15% IYE, and 0.5% KH2PO4. After 4 days of cultivation under optimized conditions in a 2.5-L stirred tank reactor the activity and productivity of xylanase were 620 IU/mL and 6,458 IU/L.h, respectively. The highest xylanase activity obtained using the optimized medium was 80% greater than the activity obtained using basal medium. The xylanase activity predicted by a polynomial model was 670 IU/ml.  相似文献   

15.
To improve the fermentation yield of xylanase by optimizing the fermentation conditions for strain Xw2, a Plackett-Burman design was used to evaluate the effects of eight variables on xylanase production by strain Xw2. The steepest ascent (descent) method was used to approach the optimal response surface experimental area. The optimal fermentation conditions were obtained by central composite design and response surface analysis. The results showed that the composition of the optimal fermentation medium was corn cob + 1.5% wheat bran (1:1), 0.04% MnSO4, 0.04% K2HPO4. 3H2O, and an inoculum size of 6% in 50 mL liquid volume (pH = 6.0). The optimal culture conditions were 28oc at 150 r/min for 54.23 h. The results of this study can serve as the basis for the industrial production and application of xylanase.  相似文献   

16.
Summary Optimization of medium composition and pH for chitinase production by the Alcaligenes xylosoxydans mutant EMS33 was carried out in the present study and the optimized medium composition and conditions were evaluated in a fermenter. The medium components screened initially using Plackett–Burman design were (NH4)2SO4, MgSO4 7H2O, KH2PO4, yeast extract, Tween 20 and chitin in shake flask experiments. The significant medium components identified by the Plackett–Burman method were MgSO4 7H2O, Tween 20 and chitin. Central composite response surface methodology was applied to further optimize chitinase production. The optimized values of MgSO4 7H2O, Tween 20, chitin and pH were found to be 0.6 g/l, 0.05 g/l, 11.5 g/l and 8.0, respectively. Chitinase and biomass production of Alcaligenes xylosoxydans EMS33, was studied in a 2-l fermenter containing (g/l): chitin, 11.5; yeast extract, 0.5; (NH4)2SO4, 1; MgSO4 7H2O, 0.6; KH2PO4, 1.36 and Tween 20, 0.05. The highest chitinase production was 54 units/ml at 60 h and pH 8.0 when the dissolved O2 concentration was 60%, whereas the highest biomass production was achieved at 36 h and pH 7.5 without any dissolved O2 control.  相似文献   

17.
In order to obtain a high ethanol yield from the Jerusalem artichoke raw extract and reduce the fermentation cost, we have engineered a new recombinant Saccharomyces cerevisiae strain that could produce ex-inulinase. The response surface methodology based on Plackett–Burman and Box–Behnken design was used to optimize the medium for the ethanol production from the Jerusalem artichoke raw extracts by the recombinant strain. In the first optimization step, Plackett–Burman design was employed to select significant factors, including concentrations of yeast extract, inoculum, and MgSO4·7H2O. In the second step, the steepest ascent experiment was carried out to determine the center point with the three significant factors; the selected combinations were further optimized using the Box–Behnken design. The maximum ethanol production rate was predicted at 91.1 g/l, which was based on a medium consisting of yeast extract 9.24 g/l, inoculum 39.8 ml/l, and MgSO4·7H2O 0.45 g/l. In the validating experiment, the ethanol fermentation rate reached 102.1 g/l, closely matching the predicted rate.  相似文献   

18.
The production of extracellular laccase by the Grammothele subargentea CLPS no. 436 strain in liquid cultures grown on a carbon-limited basal medium was significantly enhanced when culture conditions, including the addition of CuSO4·5H2O or veratryl alcohol, were consecutively optimized. A laccase activity as high as 1954.5 mU ml−1 of liquid medium was obtained under optimum conditions, which corresponded to non-agitated cultures supplemented with 0.6 mM CuSO4·5H2O. Veratryl alcohol at 1 mM was less effective than CuSO4·5H2O for increasing laccase activity levels; the supplementation of veratryl alcohol resulted only in maximum levels of 44 mU ml−1 in non-agitated cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Itaconic acid (IA), a building block platform chemical, is produced industrially by Aspergillus terreus utilizing glucose. Lignocellulosic biomass can serve as a low cost source of sugars for IA production. However, the fungus could not produce IA from dilute acid pretreated and enzymatically saccharified wheat straw hydrolyzate even at 100-fold dilution. Furfural, hydroxymethyl furfural and acetic acid were inhibitory, as is typical, but Mn2+ was particularly problematic for IA production. It was present in the hydrolyzate at a level that was 230 times over the inhibitory limit (50 ppb). Recently, it was found that PO43− limitation decreased the inhibitory effect of Mn2+ on IA production. In the present study, a novel medium was developed for production of IA by varying PO43−, Fe3+ and Cu2+ concentrations using response surface methodology, which alleviated the strong inhibitory effect of Mn2+. The new medium contained 0.08 g KH2PO4, 3 g NH4NO3, 1 g MgSO4·7H2O, 5 g CaCl2·2 H2O, 0.83 mg FeCl3·6H2O, 8 mg ZnSO4·7H2O, and 45 mg CuSO4·5H2O per liter. The fungus was able to produce IA very well in the presence of Mn2+ up to 100 ppm in the medium. This medium will be extremely useful for IA production in the presence of Mn2+. This is the first report on the development of Mn2+ tolerant medium for IA production by A. terreus.  相似文献   

20.
Glutaminase-free l-asparaginase is known to be an excellent anticancer agent. In the present study, statistically based experimental designs were applied to maximize the production of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Nine components of the medium were examined for their significance on the production of l-asparaginase using the Plackett–Burman experimental design. The medium components, viz., glucose, l-asparagine, KH2PO4, and MgSO4·7H2O, were screened based on their high confidence levels (P < 0.04). The optimum levels of glucose, l-asparagine, KH2PO4, and MgSO4·7H2O were found to be 2.076, 5.202, 1.773, and 0.373 g L−1, respectively, using the central composite experimental design. The maximum specific activity of l-asparaginase in the optimized medium was 27.88 U mg−1 of protein, resulting in an overall 8.3-fold increase in the production compared to the unoptimized medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号