首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prostate produces several proteases, the most abundant ones being kallikrein-related peptidase 3 (KLK3, PSA) and KLK2 (hK2), which are potential targets for tumor imaging and treatment. KLK3 expression is lower in malignant than in normal prostatic epithelium and it is further reduced in poorly differentiated tumors, in which the expression of KLK2 is increased. KLK3 has been shown to inhibit angiogenesis, whereas KLK2 may mediate tumor growth and invasion by participating in proteolytic cascades. Thus, it may be possible to control prostate cancer growth by modulating the proteolytic activity of KLK3 and KLK2. We have developed peptides that very specifically stimulate the activity of KLK3 or inhibit that of KLK2. Using these peptides we have established peptide-based methods for the determination of enzymatically active KLK3. The first-generation peptides are unstable in vivo and are rapidly cleared from the circulation. Currently we are modifying the peptides to make them suitable for in vivo applications. We have been able to considerably improve the stability of KLK2-binding peptides by cyclization. In this review we summarize the possible roles of KLK3 and KLK2 in prostate cancer and then concentrate on the development of peptides that modulate the activity of these proteases.  相似文献   

2.
Human glandular kallikrein (KLK2) is a highly prostate-specific serine protease, which is mainly excreted into the seminal fluid, but part of which is also secreted into circulation from prostatic tumors. Since the expression level of KLK2 is elevated in aggressive tumors and it has been suggested to mediate the metastasis of prostate cancer, inhibition of the proteolytic activity of KLK2 is of potential therapeutic value. We have previously identified several KLK2-specific linear peptides by phage display technology. Two of its synthetic analogs, A R R P A P A P G (KLK2a) and G A A R F K V W W A A G (KLK2b), show specific inhibition of KLK2 but their sensitivity to proteolysis in vivo may restrict their potential use as therapeutic agents. In order to improve the stability of the linear peptides for in vivo use, we have prepared cyclic analogs and compared their biological activity and their structural stability. A series of cyclic variants with cysteine bridges were synthesized. Cyclization inactivated one peptide (KLK2a) and its derivatives, while the other peptide (KLK2b) and its derivatives remained active. Furthermore, backbone cyclization of KLK2b improved significantly the resistance against proteolysis by trypsin and human plasma. Nuclear magnetic resonance studies showed that cyclization of the KLK2b peptides does not make the structures more rigid. In conclusion, we have shown that backbone cyclization of KLK2 inhibitory peptides can be used to increase stability without losing biological activity. This should render the peptides more useful for in vivo applications, such as tumor imaging and prostate cancer targeting.  相似文献   

3.
The 45-residue C-terminal EGF-like domain in human blood coagulation factor IX has been synthesized by a 2-step method to form selectively 3 disulfide bridges. Four out of 6 cysteines are blocked with either trityl or 4-methyl-benzyl, and the remaining 2 cysteines are blocked with acetamidomethyl (Acm). In the first step, 4 free cysteinyl thiols are released concurrently with the removal of all protecting groups except Acm and are oxidized to form 1 of the 3 possible isomers containing 2 pairs of disulfides. In the second step, iodine is used to remove the Acm groups to yield the third disulfide bridge. This approach reduces the number of possible disulfide bridging patterns from 15 to 3. To determine the optimal protecting group strategy, 3 peptides are synthesized, each with Acm blocking 1 of the 3 pairs of cysteines involved in disulfide bridges: Cys5 to Cys16 (Cys 1-3), Cys12 to Cys26 (Cys 2-4), or Cys28 to Cys41 (Cys 5-6). Only the peptide having the Cys 2-4 pair blocked with Acm forms the desired disulfide isomer (Cys 1-3/5-6) in high yield after the first step folding, as identified by proteolytic digestion in conjunction with mass spectrometric peptide mapping. Thus, the choice of which pair of cysteines to block with Acm is critically important. In the case of EGF-like peptides, it is better to place the Acm blocking groups on one of the pairs of cysteines involved in the crossing of disulfide bonds.  相似文献   

4.
Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.  相似文献   

5.
6.
Human kallikrein 2 (hK2) is a serine protease produced by the secretory epithelial cells in the prostate. Because hK2 activates several factors participating in proteolytic cascades that may mediate metastasis of prostate cancer, modulation of the activity of hK2 is a potential way of preventing tumor growth and metastasis. Furthermore, specific ligands for hK2 are potentially useful for targeting and imaging of prostate cancer and for assay development. We have used enzymatically active recombinant hK2 captured by a monoclonal antibody exposing the active site of the enzyme to screen phage display peptide libraries. Using libraries expressing 10 or 11 amino acids long linear peptides, we identified six different peptides binding to hK2. Three of these were shown to be specific and efficient inhibitors of the enzymatic activity of hK2 toward a peptide substrate. Furthermore, the peptides inhibited the activation of the proform of prostate-specific antigen by hK2. Amino acid substitution analyses revealed that motifs of six amino acids were required for the inhibitory activity. These peptides are potentially useful for treatment and targeting of prostate cancer.  相似文献   

7.
A function of the intra-disulfide bridge located at the C-terminal of Rana peptides has not been extensively studied. To investigate the function of the disulfide bridge related to the activity and the structure, we chose Gaegurin-6, isolated from Rana rugosa as a model peptide and synthesized linear analogs. The reduction of the disulfide bridge resulted in the complete loss of antimicrobial activity while replacements of cysteines by serines retained antimicrobial activity. Circular dichroism spectra from a titration of the peptides in sodium dodecyl sulfate indicated that the disulfide bridge of Gaegurin-6 might stabilize the induction of an helical structure in lipid membranes and the helical forming propensity of the peptides correlated with antimicrobial activity.  相似文献   

8.
HNP-2 is a 29-residue peptide present in human neutrophils and is a member of the defensin family of antimicrobial peptides. All defensins contain an invariant disulfide infrastructure comprised of 6 half-cystine residues. The disulfide structure of HNP-2 was determined using a novel method to identify the cross-links involving the amino- and carboxyl-terminal cysteine residues. A derivative of HNP-2 was synthesized by covalent modification of the terminal cysteine residues. This derivative was purified, characterized, and subjected to exhaustive proteolytic digestion. Characterization of purified proteolytic fragments by amino acid analysis and/or sequence analysis identified an oligopeptide containing all 6 cystine residues. This oligopeptide was subjected to a single cycle of Edman degradation to cleave the peptide bond linking 2 adjacent cysteines. Purification and characterization of the Edman reaction products allowed for assignment of the disulfide array in HNP-2, revealing a cystine motif unique to the defensin peptide family. Further, the covalent structure of HNP-2 was found to be cyclic as one disulfide links the amino- and carboxyl-terminal cysteine residues. HNP-2 is the only polypeptide known to possess such a configuration.  相似文献   

9.
Hepcidin, a 25 amino acid peptide hormone containing a complex network of four disulfide bonds is the hormone regulator of iron homeostasis. Three bridges synthetic peptide analogs have been prepared following two synthetic strategies and two oxidation procedures: i) a microwave-assisted solid phase synthesis followed by air oxidation of the six free cysteines ii) a manual solid phase synthesis followed by stepwise deprotection and oxidation of cysteine pairs. All the peptides with different connectivities have been characterized by MALDI ToF spectrometry, and tested for their ability to degrade the cellular iron exporter, ferroportin. While linear peptides are inactive, the one-bridge and two-bridge peptides retaining protected cysteines by bulky substituents are active. Similarly, the three-bridge peptides are active irrespective of their disulfide connectivities.  相似文献   

10.
The smallest known naturally occurring trypsin inhibitor SFTI-1 (14 amino acid residues head-to-tail cyclic peptide containing one disulfide bridge) and its two analogues with one cycle each were synthesized by the solid phase method. Their trypsin inhibitory activity was determined as association equilibrium constants (K(a)). Additionally, hydrolysis rates with bovine beta-trypsin were measured. Among all three peptides, the wild SFTI-1 and the analogue with the disulfide bridge only had, within the experimental error, the same activity (the K(a) values 1.1 x 10(10) and 9.9 x 10(9) M(-1), respectively). Both peptides displayed unchanged inhibitory activity up to 6 h. The trypsin inhibitory activity of the analogue with the head-to-tail cycle only was 2.4-fold lower. It was also remarkably faster hydrolyzed (k = 1.1 x 10(-4) mol(peptide) x mol(enzyme)(-1) x s(-1)) upon the incubation with the enzyme than the other two peptides. This indicates that the head-to-tail cyclization is significantly less important than the disulfide bridge for maintaining trypsin inhibitory activity.  相似文献   

11.
The effect of introducing a disulfide bridge between the N- and C-terminal ends on the structure and biological activities of the 13-residue linear peptide PKLLKTFLSKWIG(SPFK), which has both antibacterial and hemolytic activity, have been investigated. The terminal amino acids P and G in SPFK were replaced by cysteines to form a disulfide bridge. The linear peptides C(Acm)KLLKTFLSKWIC(Acm) and C(Acm) KLLKTFLSKWIC(Acm)-amide, where Acm is acetamidomethyl group, showed antibacterial activity but did not possess hemolytic activity unlike SPFK. Introduction of an S-S bridge resulted in enhanced hemolytic activity compared with SPFK. The hemolytic activity was particularly pronounced in the cyclic peptide CKLLKTFLSKWIC-amide. Circular dichroism studies indicate that the cyclic peptides tend to adopt distorted helical structures. The cyclic peptides also have a greater affinity for lipid vesicles, which could be the reason for the effective perturbation of the erythrocyte membrane.  相似文献   

12.
Prostate cancer (PCa) is one of the most common types of cancer in men in the United States and is the second leading cause of cancer related death in men. Clinically, secreted prostate specific antigen (PSA) has gained recognition because of its proteolytic activity being directly linked to PCa cell proliferation leading to disease initiation and progression. Using phage display technology, we identified four distinct cyclical peptides. These peptides apart from differences in their amino acid sequence, elicited minimal cross reactive antibody responses against each other. One of the four peptides analyzed produced an antibody response that recognizes the PSA protein. We demonstrate that the synthetic PSA peptide mimics identified in our study are immunologically active and produce neutralizing activity and this has relevance and utility for prostate cancer disease progression.  相似文献   

13.
Summary Trypsin inhibitor SFTI-1 isolated from sunflower seeds (comprising 14 amino acid residues and two cycles: head-to-tail cyclisation and disulfide bridge) is the smallest naturally occurring plant serine proteinase inhibitor. In our recent paper we have shown that the elimination head-to-tail cyclisation did not change trypsin inhibitory activity as judged by measured by association equilibrium constants K a . The removal of disulfide bridge produced 2.4-fold lower activity. In the present paper we described chymotrypsin inhibitory activity. SFTI-1 inhibits significantly lower bovine α-chymortypsin (K a =(5.20±1.56)×106 M−1). The activity of the analogue with disulfide bridge only was practically the same, whereas the K a value determined for homodetic peptide was almost 3-fold lower. Considering the results obtained and the recent literature data we postulate the lower inhibitory activity against both enzymes of the analogue with head-to-tail cyclisation only reflect its lower proteolytic stability.  相似文献   

14.
Identification of the thiol groups in human ceruloplasmin   总被引:1,自引:0,他引:1  
Human ceruloplasmin was attached to activated thiol-Sepharose via its thiol groups and was then digested with pepsin. After appropriate washings the thiol peptides were eluted by reduction and were carboxymethylated and purified by column chromatography and electrophoresis. Amino acid sequencing showed that the peptides were derived from five different areas in the molecule and together accounted for 92 residues, six of which were cysteines. Since one of the peptides contained two cysteines it seemed evident that, prior to the reductive elution of the peptides, one of these had been paired in a disulfide bridge with one of the four remaining thiol peptides present in the mixture. The disulfide was isolated and identified by digesting the immobilized protein with pepsin followed by trypsin. The second (tryptic) digestion released the disulfide peptide. Three of the true thiol peptides obtained occur in regions of sequence that have already been reported and which account for 564 of the approximately 1050 residues present in the protein. Three of them also show about 40% identity with each other, whereas no relatedness is observed with the fourth. The three related peptides are, moreover, clearly homologous to the copper-binding areas in the small blue plant and bacterial proteins plastocyanin and azurin. Homologous regions are also evident when the peptides are compared to the two sequences reported for the blue oxidase, fungal laccase, one of which contains a disulfide bridge.  相似文献   

15.
Prostate-specific antigen (PSA), a member of the kallikrein sub-group of the trypsin serine protease family, is a widely used marker for prostate cancer. Several sequences with specific binding to PSA have been identified by using phage display peptide libraries. The GST-fusion proteins of the characterized sequences have been shown to increase the enzyme activity of PSA to a synthetic substrate. The corresponding three cyclic synthetic analogues CVFTSNYAFC (A-1), CVFAHNYNYLVC (B-2) and CVAYCIEHHCWTC (C-4) have similar PSA promoting activity. Despite differences in the amino acid sequences, all three peptides bind to the same region of PSA. The conformation of the peptides was investigated by proton NMR spectroscopy. In addition, alanine replacement was used to characterize the prerequisites for binding. It is proposed that interactions with PSA are based on the aromatic and hydrophobic features of the amino acid side chains. Furthermore, it is suggested that peptides form beta-turn structures forced by cysteine bridges directing important aromatic side chains to the same side of the turn-structure.  相似文献   

16.
In keeping with recent efforts to generate compounds for antibiotic and microbicide development, we focused on the creation of non‐natural organo‐peptide hybrids of antimicrobial peptide amides (KLK(L)nKLK‐NH2) derived from sapecin B and a self‐assembling oligoglycine organo‐peptide bolaphile containing an ω‐amino fatty acid residue. The hybrid organo‐peptide bolaphiles with two cationic KLK tripeptide motifs linked with an ω‐amino acid residue (penta‐, octa‐ or undecamethylene chain) maintained the self‐assembling properties of the root oligoglycine bolaphile. Electron microscopy clearly revealed complex supramolecular architectures for both sapecin B‐derived peptides and the hybrid analogues. FT‐IR spectroscopy indicated that the supramolecular structures were composed primarily of β‐sheets. CD revealed that the hybrid bolaphiles did not share the same secondary structures as the sapecin B peptides in solution. However, although secondary structures of antimicrobial peptides are central in the activity, the organo‐peptide bolaphiles also retained the potent antimicrobial activity of the leader sapecin B‐derived peptide against both Gram‐positive and Gram‐negative bacteria. In general, the hybrids were more selective than the sapecin B peptides, as they displayed little or no appreciable haemolytic activity. The results obtained herald a new approach for the design of purpose‐built hybrid organo‐peptide bolaphiles. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Post-translationally introduced dehydroamino acids often play an important role in the activity and receptor specificity of biologically active peptides. In addition, a dehydroamino acid can be coupled to a cysteine to yield a cyclized peptide with increased biostability and resistance against proteolytic degradation and/or modified specificity. The lantibiotic nisin is an antimicrobial peptide produced by Lactococcus lactis. Its post-translational enzymatic modification involves NisB-mediated dehydration of serines and threonines and NisC-catalyzed coupling of cysteines to dehydroresidues, followed by NisT-mediated secretion. Here, we demonstrate that a L. lactis strain containing the nisBTC genes effectively dehydrates and secretes a wide range of medically relevant nonlantibiotic peptides among which variants of adrenocorticotropic hormone, vasopressin, an inhibitor of tripeptidyl peptidase II, enkephalin, luteinizing hormone-releasing hormone, angiotensin, and erythropoietin. For most of these peptides, ring formation was demonstrated. These data show that lantibiotic enzymes can be applied for the modification of peptides, thereby enabling the biotechnological production of dehydroresidue-containing and/or thioether-bridged therapeutic peptides with enhanced stability and/or modulated activities.  相似文献   

18.
Native interleukin-2 (IL-2) contains three cysteines; two exist in a disulfide bridge (Cys-58 and Cys-105) and the third Cys-125 is a free sulfhydryl. In the presence of 6 M guanidine hydrochloride at alkaline pH, IL-2 is converted into three isomers. Each isomer represents one of the three possible disulfide-linked forms that can be generated from three cysteines. These three isomers were resolved on a C4 reverse-phase HPLC system. The identity of each of the three forms was determined by carboxymethylation of the free cysteines in each isomer with [3H]iodoacetic acid followed by determination of the labelled cysteines by tryptic peptide mapping. Tryptic peptide mapping of the more predominant of the two scrambled peaks showed it to be the Cys-105-S-S-Cys-125 linked form of IL-2. A Ser-125 construction of IL-2, which lacks a free cysteine, did not scramble under these conditions. These experiments demonstrate the utility of reverse-phase HPLC in studies of protein folding and disulfide bond structure.  相似文献   

19.
Human tissue kallikreins (KLKs or kallikrein-related peptidases) are a subgroup of extracellular serine proteases that act on a wide variety of physiological substrates, while they display aberrant expression patterns in certain types of cancer. Differential expression patterns lead to the exploitation of these proteins as new cancer biomarkers for hormone-dependent malignancies, in particular. The prostate-specific antigen or kallikrein-related peptidase 3 (PSA/KLK3) is an established tumor marker for the diagnosis and monitoring of prostate cancer. It is well documented that specific KLK genes are co-expressed in tissues and in various pathologies suggesting their participation in complex proteolytic cascades. Here, we review the currently established knowledge on the involvement of KLK proteolytic cascades in the regulation of physiological and pathological processes in prostate tissue and in skin. It is well established that the activity of KLKs is often regulated by auto-activation and subsequent autolytic internal cleavage leading to enzymatic inactivation, as well as by inhibitory serpins or by allosteric inhibition by zinc ions. Redistribution of zinc ions and alterations in their concentration due to physiological or pathological reasons activates specific KLKs initiating the kallikrein cascade(s). Recent studies on kallikrein substrate specificity allowed for the construction of a kallikrein interaction network involved in semen liquefaction and prostate cancer, as well as in skin pathologies, such as skin desquamation, psoriasis and cancer. Furthermore, we discuss the crosstalks between known proteolytic pathways and the kallikrein cascades, with emphasis on the activation of plasmin and its implications in prostate cancer. These findings may have clinical implications for the underlying molecular mechanism and management of cancer and other disorders in which KLK activity is elevated.  相似文献   

20.
Human urotensin II (hU-II; H-Glu-Thr-Pro-Asp-cyclo[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) is a disulfide bridged undecapeptide recently identified as the ligand of an orphan G protein-coupled receptor. hU-II has been described as the most potent vasoconstrictor compound identified to date. With the aim of replacing the disulfide bridge by a chemically more stable moiety, we have synthesized and tested a series of lactam analogues of hU-II minimum active fragment, that is hU-II(4-11). The contractile activity of the synthetic analogues on the rat isolated thoracic aorta was found to be dependent upon the dimension of the lactam bridge. The most active peptide, H-Asp-cyclo[Orn-Phe-Trp-Lys-Tyr-Asp]-Val-OH (3), is approximately 2 logs less potent than hU-II (pD(2)=6.3 vs 8.4). A conformational analysis in solution of the active peptide 3, one of the inactive analogues, and hU-II was performed, using NMR and molecular modelling techniques. A superposition of the calculated structures of hU-II and 3 clearly shows that three out of four key residues (i.e., Phe(6), Lys(8) and Tyr(9)) maintain the same side- chain orientation, while the fourth one, Trp(7), cannot be superimposed. This observation could explain the reduced biological activity of the synthetic analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号