首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The human granulocyte-macrophage colony stimulating factor (hGM-CSF) containing either an endoplasmic reticulum (ER) retention signal or a phaseolin vacuolar sorting signal peptide was expressed in Arabidopsis thaliana under the control of a tissue-specific promoter, derived from the soybean α′ subunit of β-conglycinin. No significant differences in recombinant hGM-CSF (rhGM-CSF) accumulation were detected between transgenic plants carrying either one of the two signal peptides. Hybrid seed from crosses between single-copy transformants tailed with the ER retention signal tetrapeptide and single-copy transformed plants tagged with a phaseolin four carboxy-terminal residues showed gene additive effects. The highest expression level of rhGM-CSF was 0.05% of total soluble protein of immature siliques, indicating that the two signal peptides functioned independently in the protein-sorting pathway. Additionally, TF-1 cell proliferation data demonstrated that rhGM-CSF was biologically active.  相似文献   

2.
Rice seed has been used as a production platform for high value recombinant proteins. When mature human interleukin 7 (hIL-7) was expressed as a secretory protein in rice endosperm by ligating the N terminal glutelin signal peptide and the C terminal KDEL endoplasmic reticulum (ER) retention signal to the hIL-7 cytokine to improve production yield, this protein accumulated at levels visible by Coomassie Brilliant Blue staining. However, the production of this protein led not only to a severe reduction of endogenous seed storage proteins but also to a deterioration in grain quality. The appearance of aberrant grain phenotypes (such as floury and shrunken) was attributed to ER stress induced by the retention of highly aggregated unfolded hIL-7 in the ER lumen, and the expression levels of chaperones such as BiPs and PDIs were enhanced in parallel with the increase in hIL-7 levels. The activation of this ER stress response was shown to be mainly mediated by the OsIRE1-OsbZIP50 signal cascade, based on the appearance of unconventional splicing of OsbZIP50 mRNA and the induction of OsBiP4&5. Interestingly, the ER stress response could be induced by lower concentrations of hIL-7 versus other types of cytokines such as IL-1b, IL-4, IL-10, and IL-18. Furthermore, several ubiquitin 26S proteasome-related genes implicated in ER-associated degradation were upregulated by hIL-7 production. These results suggest that severe detrimental effects on grain properties were caused by proteo-toxicity induced by unfolded hIL-7 aggregates in the ER, resulting in the triggering of ER stress.  相似文献   

3.
Seeds possess a high intrinsic capacity for protein production that makes them a desirable bioreactor platform for the manufacture of transgenic products. One strategy to enhance foreign protein production involves exchanging the capacity to produce intrinsic proteins for the capacity to produce a high level of foreign proteins. Suppression of the alpha/alpha' subunit of beta-conglycinin storage protein synthesis in soybean has been shown previously to result in an increase in the accumulation of the glycinin storage protein, some of which is sequestered as proglycinin into de novo endoplasmic reticulum (ER)-derived protein bodies. The exchange of glycinin for conglycinin is quantitative, with the remodelled soybeans possessing a normal protein content with an altered proteome. The green fluorescent protein (GFP)-kdel reporter was transferred in a construct using the glycinin promoter and terminator to mimic glycinin gene expression. When expressed in soybean seeds, GFP-kdel accreted to form ER-derived protein bodies. The introgression of GFP-kdel into the alpha/alpha' subunit of the beta-conglycinin suppression background resulted in a fourfold enhancement of GFP-kdel accumulation to > 7% (w/w) of the total protein in soybean seeds. The resulting seeds accumulated a single population of ER membrane-bound protein bodies that contained both GFP-kdel and glycinin. Thus, the collateral proteome rebalancing that occurs with the suppression of intrinsic proteins in soybean can be exploited to produce an enhanced level of foreign proteins.  相似文献   

4.
Soybean peroxidase (SBP), (EC 1.11.1.7) can be readily extracted from soybean seed hulls. This study reports on the direct use of soybean seed‐hull extracts for the bioremediation of phenolic wastes. The crude SBP extract from the hulls, like pure soybean peroxidase, is catalytically active in a broad range of pH and temperatures. As SBP is gradually released into the aqueous solution from seed hulls, the direct use of soybean seed hulls can reduce SBP inactivation by H2O2 and enhance the utilization efficiency of SBP through the slow release of the enzyme from the seed hulls. However, large doses of soybean seed hulls were found to be ineffective in phenol removal. Gradual additions of H2O2 in combination with the SBP released from the hulls were applied to optimize the bioremediation. Since the crude extract contains a mixture of multiple soybean proteins, soybean seed hull slurry required a higher concentration of H2O2 to remove the phenolic substrates than did the purified enzyme. Under the experimental conditions, 80 % of phenol (10.6 mM), 96 % of 2‐chlorophenol (3.9 mM), 95 % of 2,4‐dichlorophenol (3.1 mM), and 94 % of mixed phenol and chlorophenols were removed using soybean seed hulls in a single batch reactor. These results demonstrate that soybean seed hulls, compared to purified SBP, may be a more cost‐effective alternative in the enzymatic removal of phenolic compounds through polymerization reactions.  相似文献   

5.
The plant toxin ricin is synthesized in castor bean seeds as an endoplasmic reticulum (ER)-targeted precursor. Removal of the signal peptide generates proricin in which the mature A- and B-chains are joined by an intervening propeptide and a 9-residue propeptide persists at the N terminus. The two propeptides are ultimately removed in protein storage vacuoles, where ricin accumulates. Here we have demonstrated that the N-terminal propeptide of proricin acts as a nonspecific spacer to ensure efficient ER import and glycosylation. Indeed, when absent from the N terminus of ricin A-chain, the non-imported material remained tethered to the cytosolic face of the ER membrane, presumably by the signal peptide. This species appeared toxic to ribosomes. The propeptide does not, however, influence catalytic activity per se or the vacuolar targeting of proricin or the rate of retrotranslocation/degradation of A-chain in the cytosol. The likely implications of these findings to the survival of the toxin-producing tissue are discussed.  相似文献   

6.
Soybean (Glycine max [L.] Merrill) lectin is a seed protein that accumulates in protein bodies of cotyledons during seed development. We have constructed two expression cassettes containing the 5′ and 3′ regions of the soybean lectin gene connected by aNot I restriction site. One vector also contains the 32 amino acid signal sequence. Using polymerase chain reaction (PCR), the coding region of the β-glucuronidase (uidA) gene was inserted into theNot I site of each vector. We tested the function of the expression cassettes in transformed embryogenic cultures of soybean. Development-specific GUS expression was observed in developing somatic embryos transformed with the chimeric lectin promoter-GUS constructs as determined by histochemical assays. Our data indicate that these cassettes could be used to drive expression of foreign genes to modify embryo-specific traits of soybean as protein quality or quantity in the seed.  相似文献   

7.
Human IL‐10 (hIL‐10) is a therapeutic treatment candidate for inflammatory allergy and autoimmune diseases. Rice seed‐produced IL‐10 can be effectively delivered directly to gut‐associated lymphoreticular tissue (GALT) via bio‐encapsulation. Previously, the codon‐optimized hIL‐10 gene was expressed in transgenic rice with the signal peptide and endoplasmic reticulum (ER) retention signal (KDEL) at its 5′ and 3′ ends, respectively, under the control of the endosperm‐specific glutelin GluB‐1 promoter. The resulting purified hIL‐10 was biologically active. In this study, the yield of hIL‐10 in transgenic rice seed was improved. This protein accumulated at the intended deposition sites, which had been made vacant through the selective reduction, via RNA interference, of the endogenous seed storage proteins prolamins or glutelins. Upon suppression of prolamins that were sequestered into ER‐derived protein bodies (PB‐I), hIL‐10 accumulation increased approximately 3‐fold as compared to rice seed with no such suppression and reached 219 μg/grain. In contrast, reducing the majority of the glutelins stored in protein‐storage vacuoles (PB‐II) did not significantly affect the accumulation of hIL‐10. Considering that hIL‐10 is synthesized in the ER lumen and subsequently buds off in ER‐derived granules called IL‐10 granules in a manner similar to PB‐Is, these results indicate that increases in the available deposition space for the desired recombinant proteins may be crucial for improvements in yield. Furthermore, efficient dimeric intermolecular formation of hIL‐10 by inhibiting interaction with Cys‐rich prolamins also contributed to the enhanced formation of IL‐10 bodies. Higher yield of hIL‐10 produced in rice seeds is expected to have broad application in the future.  相似文献   

8.
Kinney AJ  Jung R  Herman EM 《The Plant cell》2001,13(5):1165-1178
The expression of the alpha and alpha' subunits of beta-conglycinin was suppressed by sequence-mediated gene silencing in transgenic soybean seed. The resulting seeds had similar total oil and protein content and ratio compared with the parent line. The decrease in beta-conglycinin protein was apparently compensated by an increased accumulation of glycinin. In addition, proglycinin, the precursor of glycinin, was detected as a prominent polypeptide band in the protein profile of the transgenic seed extract. Electron microscopic analysis and immunocytochemistry of maturing transgenic soybean seeds indicated that the process of storage protein accumulation was altered in the transgenic line. In normal soybeans, the storage proteins are deposited in pre-existing vacuoles by Golgi-derived vesicles. In contrast, in transgenic seed with reduced beta-conglycinin levels, endoplasmic reticulum (ER)-derived vesicles were observed that resembled precursor accumulating-vesicles of pumpkin seeds and the protein bodies accumulated by cereal seeds. Their ER-derived membrane of the novel vesicles did not contain the protein storage vacuole tonoplast-specific protein alpha-TIP, and the sequestered polypeptides did not contain complex glycans, indicating a preGolgi and nonvacuolar nature. Glycinin was identified as a major component of these novel protein bodies and its diversion from normal storage protein trafficking appears to be related to the proglycinin buildup in the transgenic seed. The stable accumulation of proteins in a protein body compartment instead of vacuolar accumulation of proteins may provide an alternative intracellular site to sequester proteins when soybeans are used as protein factories.  相似文献   

9.
DP1B is a synthetic analogue of spider dragline silk protein. It can be spun to form silk fiber. Previously, it had been expressed in transgenic plants, showing the general feasibility of the plant-based DP1B production. However, success of such a plant-based platform requires a great increase of DP1B productivity in plant cells to reduce production cost. This report describes a protein targeting approach to accumulate DP1B in apoplast, ER lumen, and vacuole in Arabidopsis cells, by utilizing appropriate combinations of sporamin-targeting determinant peptides and ER retention peptide. The approach has dramatically enhanced DP1B accumulation, resulting in high production yield. The accumulation can be as high as 8.5 and 6.7% total soluble protein in leaf tissue by targeting to apoplast and ER lumen, respectively, or as high as 18 and 8.2% total soluble protein in seeds by targeting to ER lumen and vacuole, respectively. However, the vacuole targeting in leaves and the apoplast targeting in seeds have failed to accumulate full length DP1B molecules or any DP1B at all, respectively, suggesting that they may not be suitable for applications in leaf tissues and seeds. Data in this study recommend a combination of seed-specific expression and ER-targeting as one of the best strategies for yield enhancement of plant-based DP1B production.  相似文献   

10.
Potato tuber storage proteins were obtained from vacuoles isolated from field-grown starch potato tubers cv. Kuras. Vacuole sap proteins fractionated by gel filtration were studied by mass spectrometric analyses of trypsin and chymotrypsin digestions. The tuber vacuole appears to be a typical protein storage vacuole absent of proteolytic and glycolytic enzymes. The major soluble storage proteins included 28 Kunitz protease inhibitors, nine protease inhibitors 1, eight protease inhibitors 2, two carboxypeptidase inhibitors, eight patatins and five lipoxygenases (lox), which all showed cultivar-specific sequence variations. These proteins, except for lox, have typical endoplasmic reticulum (ER) signal peptides and putative vacuolar sorting determinants of either the sequence or structure specific type or the C-terminal type, or both. Unexpectedly, sap protein variants imported via the ER showed multiple molecular forms because of extensive and unspecific proteolytic cleavage of exposed N- and C-terminal propeptides and surface loops, in spite of the abundance of protease inhibitors. Some propeptides are potential novel vacuolar targeting peptides. In the insoluble vacuole fraction two variants of phytepsin (aspartate protease) were identified. These are most probably the processing enzymes of potato tuber vacuolar proteins. Database Proteome data have been submitted to the PRIDE database under accession number 17707.  相似文献   

11.
Plants have attracted increasing attention as an expression platform for the production of pharmaceutical proteins due to its unlimited scalability and low cost potential. However, compared to other expression systems, plants accumulate relatively low levels of foreign proteins, thus necessitating the development of efficient systems for purification of foreign proteins from plant tissues. We have developed a novel strategy for purification of recombinant proteins expressed in plants, based on genetic fusion to soybean agglutinin (SBA), a homotetrameric lectin that binds to N-acetyl-D-galactosamine. Previously it was shown that high purity SBA could be recovered from soybean with an efficiency of greater than 90% following one-step purification using N-acetyl-D-galactosamine-agar columns. We constructed an SBA fusion protein containing the reporter green fluorescent protein (GFP) and transiently expressed it in N. benthamiana plants. We achieved over 2.5% of TSP accumulation in leaves of N. benthamiana. Confocal microscopic analysis demonstrated in vivo activity of the fused GFP partner. Importantly, high purity rSBA-GFP was recovered from crude leaf extract with ~90% yield via one-step purification on N-acetyl-D-galactosamine-agar columns, and the purified fusion protein was able to induce the agglutination of rabbit red blood cells. Combined with this, tetrameric assembly of the fusion protein was demonstrated via western blotting. In addition, rSBA-GFP retained its GFP signal on agglutinated red blood cells, demonstrating the feasibility of using rSBA-GFP for discrimination of cells that bear the ligand glycan on their surface. This work validates SBA as an effective affinity tag for simple and rapid purification of genetically fused proteins.  相似文献   

12.
Putative vacuolar sorting receptors that bind to the vacuolar targeting signals have been found in various plants; pumpkin PV72, pea BP-80 and Arabidopsis AtELP. PV72 is a seed-specific receptor that is predicted to sort seed storage proteins to protein storage vacuoles. Analysis by surface plasmon resonance showed that the lumenal domain of PV72 bound to an NPIR (a typical vacuolar targeting signal)-containing peptide of the precursor of a cysteine proteinase, AtALEU, in the presence of Ca(2+) (K(D) = 0.1 micro M). To elucidate the receptor-dependent transport of vacuolar proteins in plant cells, we produced transgenic Arabidopsis plants that expressed a fusion protein (PV72-HDEL) composed of the lumenal domain of PV72 and an endoplasmic reticulum (ER)-retention signal, HDEL. The expression of PV72-HDEL induced the accumulation of the AtALEU precursor. The accumulation level of the AtALEU precursor was dependent on that of PV72-HDEL. In contrast, it did not induce the accumulation of a precursor of another cysteine proteinase, RD21, which contains no NPIR. Detailed subcellular localization revealed that both the AtALEU precursor and PV72-HDEL accumulated in the ER fraction. We found that most of the AtALEU precursor molecules formed a complex with PV72-HDEL. The AtALEU precursor might be trapped by PV72-HDEL in the ER and not transported to the vacuoles. This in-planta analysis supports the hypothesis that an Arabidopsis homolog of PV72 functions as a sorting receptor for the NPIR-containing proteinase. The overall results suggest that vacuolar sorting receptors for the protein storage vacuoles and the lytic vacuoles share the similar recognition mechanism for a vacuolar targeting signal.  相似文献   

13.
Seed storage proteins accumulate either in the endoplasmic reticulum (ER) or in vacuoles, and it would appear that polymerization events play a fundamental role in regulating the choice between the two destinies of these proteins. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N‐terminal half of the Zea mays prolamin γ‐zein forms interchain disulfide bonds that facilitate the formation of ER‐located protein bodies. Wild‐type phaseolin does not contain cysteine residues, and assembles into soluble trimers that transiently polymerize before sorting to the vacuole. These transient interactions are abolished when the C‐terminal vacuolar sorting signal AFVY is deleted, indicating that they play a role in vacuolar sorting. We reasoned that if the phaseolin interactions directly involve the C terminus of the polypeptide, a cysteine residue introduced into this region could stabilize these transient interactions. Biochemical studies of two mutated phaseolin proteins in which a single cysteine residue was inserted at the C terminus, in the presence (PHSL*) or absence (Δ418*) of the vacuolar signal AFVY, revealed that these mutated proteins form disulphide bonds. PHSL* had reduced protein solubility and a vacuolar trafficking delay with respect to wild‐type protein. Moreover, Δ418* was in part redirected to the vacuole. Our experiments strongly support the idea that vacuolar delivery of phaseolin is promoted very early in the sorting process, when polypeptides are still contained within the ER, by homotypic interactions.  相似文献   

14.
通过体外操作,对豇豆胰蛋白酶抑制剂(cpti)基因进行修饰,获得了一个融合蛋白基因(sck).该基因是在cpti基因的基础上,在其5'端添加了信号肽编码序列,在3'端添加了内质网滞留信号编码序列,旨在引导基因转译产物进入细胞内质网,并最终滞留在内质网及其衍生的蛋白体内.用sck基因转化烟草(Nicotiana tabacum L.),对获得的转基因植株进行ELISA检测.结果表明,含有修饰基因的转基因烟草CpTI蛋白含量有明显提高,比转未修饰cpti基因烟草平均高出2倍,最高单株可达4倍以上,同时转基因植株的抗虫性也有了显著的提高.结果表明,采用外源蛋白靶向定位的策略,可大幅度提高外源蛋白在转基因植物细胞内的积累量,在植物基因工程研究中具有广泛的借鉴意义.  相似文献   

15.
16.
Proprotein precursors of vacuolar components are transportedfrom endoplasmic reticulum to the dense vesicles, and then targetedto the vacuoles, where they are processed proteolytically totheir mature forms by a vacuolar processing enzyme. Immunoelectronmicroscopy of the maturing endosperm of castor bean (Ricinnscommunis) revealed that the vacuolar processing enzyme is selectivelylocalized in the dense vesicles as well as in the vacuolar matrix.This indicates that the vacuolar processing enzyme is transportedto vacuoles via dense vesicles as does IIS globulin, a majorseed protein. During seed maturation of castor bean, an increasein the activity of the vacuolar processing enzyme in the endospermpreceded increases in amounts of total protein. The enzymaticactivity reached a maximum at the late stage of seed maturationand then decreased during seed germination concomitantly withthe degradation of seed storage proteins. We examined the distributionof the enzyme in different tissues of various plants. The processingenzyme was found in cotyledons of castor bean, pumpkin and soybean,as well as in endosperm, and low-level processing activity wasalso detected in roots, hypocotyls and leaves of castor bean,pumpkin, soybean, mung bean and spinach. These results suggestthat the proprotein-processing machinery is widely distributedin vacuoles of various plant tissues. (Received July 11, 1993; Accepted August 17, 1993)  相似文献   

17.
Summary A reduction in K supply to soybean plants to deficiency levels during both vegetative and reproductive development resulted in reductions not only in yield, but also in oil and K concentrations in the seed and a concomittant increase in seed protein concentration. Correlations between mean fruit yield and oil, protein and K concentrations, over a wide range of K regimes, were 0.97, −0.94 and 0.98, respectively. When K supply was increased well above the level necessary to produce maximum yields,i.e. luxury consumption, there was no significant change in K concentration in the seed, indicating a high degree of control in the movement of K to the developing seed under high K regimes. When the K supply to the plant was limiting, the rate of accumulation of oil and carbohydrate fractions, but not of seed protein, declined during the latter part of podfilling. This resulted in a fall in the C/N ratio in the non-structural seed components during this part of seed development. Depriving plants of K only during seed development had no effect on seed composition or yield, whereas resupplying K to deficient plants after anthesis resulted in almost the same seed composition and yield as that which occurred with control plants. Possible mechanisms whereby K deficiency influences soybean seed composition and yield are discussed in terms of movement of carbohydrate and nitrogen to the seed. We suggest that potassium-deficient soils are likely to produce crops with low yields and low seed oil levels; the crop may respond to K fertilizers as late as anthesis.  相似文献   

18.
通过体外操作,对豇豆胰蛋白酶抑制剂(cpti)基因进行修饰,获得了一个融合蛋白基因(sck)。该基因是在cpti基因的基础上,在其5’端添加了信号肽编码序列,在3’端添加了内质网滞留信号编码序列,旨在引导基因转译产物进入细胞内质网,并最终滞留在内质网及其衍生的蛋白体内。用sck基因转化烟草(Nicotiana tabacum L.),对获得的转基因植株进行ELISA检测。结果表明,含有修饰基因的转基因烟草CpTI蛋白含量有明显提高,比转末修饰cpti基因烟草平均高出2倍,最高单株可达4倍以上,同时转基因植株的抗虫性也有了显著的提高。结果表明,采用外源蛋白靶向定位的策略,可大幅度提高外源蛋白在转基因植物细胞内的积累量,在植物基因工程研究中具有广泛的借鉴意义。  相似文献   

19.
Two field experiments were established to assess the competitiveness of foreign bradyrhizobia in infecting the promiscuous soybean cultivar TGX 536-02D. Seeds were inoculated with antibiotic mutants of the bradyrhizobia strains before planting after land preparation. Soybean plants were harvested at pre-determined days after planting for estimating nodule number, nodule dry weight, nodule occupancy, shoot dry weight and seed yield. Results show that nodule number and dry weight significantly increased and showed great variability at 84 days after planting (DAP), probably due to differences in the ability of inoculant bradyrhizobia to form nodules with the soybean cultivar TGX 536-02D. Increased shoot dry weight, %N, total N and seed yield were a result of increased nodulation by the effective and competitive inoculant Bradyrhizobium strains. Strain USDA 110 occupied the highest percentage of nodule sites because it was more competitive than the other Bradyrhizobium strains. These results show that there was high potential for increasing growth and seed yield of the promiscuous soybean cultivar TGX 536-02D by inoculation with foreign Bradyrhizobium strains.  相似文献   

20.
The fate of the type I ribosome-inactivating protein (RIP) saporin when initially targeted to the endoplasmic reticulum (ER) in tobacco protoplasts has been examined. We find that saporin expression causes a marked decrease in protein synthesis, indicating that a fraction of the toxin reaches the cytosol and inactivates tobacco ribosomes. We determined that saporin is largely secreted but some is retained intracellularly, most likely in a vacuolar compartment, thus behaving very differently from the prototype RIP ricin A chain. We also find that the signal peptide can interfere with the catalytic activity of saporin when the protein fails to be targeted to the ER membrane, and that saporin toxicity undergoes signal sequence-specific regulation when the host cell is subjected to ER stress. Replacement of the saporin signal peptide with that of the ER chaperone BiP reduces saporin toxicity and makes it independent of cell stress. We propose that this stress-induced toxicity may have a role in pathogen defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号