首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Mast cell activation involves cross-linking of IgE receptors followed by phosphorylation of the non-receptor tyrosine kinase Syk. This results in activation of the plasma membrane-bound enzyme phospholipase Cgamma1, which hydrolyzes the minor membrane phospholipid phosphatidylinositol 4,5-bisphosphate to generate diacylglycerol and inositol trisphosphate. Inositol trisphosphate raises cytoplasmic Ca2+ concentration by releasing Ca2+ from intracellular stores. This Ca2+ release phase is accompanied by sustained Ca2+ influx through store-operated Ca2+ release-activated Ca2+ (CRAC) channels. Here, we find that engagement of IgE receptors activates Syk, and this leads to Ca2+ release from stores followed by Ca2+ influx. The Ca2+ influx phase then sustains Syk activity. The Ca2+ influx pathway activated by these receptors was identified as the CRAC channel, because pharmacological block of the channels with either a low concentration of Gd3+ or exposure to the novel CRAC channel blocker 3-fluoropyridine-4-carboxylic acid (2',5'-dimethoxybiphenyl-4-yl)amide or RNA interference knockdown of Orai1, which encodes the CRAC channel pore, all prevented the increase in Syk activity triggered by Ca2+ entry. CRAC channels and Syk are spatially close together, because increasing cytoplasmic Ca2+ buffering with the fast Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis failed to prevent activation of Syk by Ca2+ entry. Our results reveal a positive feedback step in mast cell activation where receptor-triggered Syk activation and subsequent Ca2+ release opens CRAC channels, and the ensuing local Ca2+ entry then maintains Syk activity. Ca2+ entry through CRAC channels therefore provides a means whereby the Ca2+ and tyrosine kinase signaling pathways can interact with one another.  相似文献   

2.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

3.
One current hypothesis for the initiation of Ca2+ entry into nonelectrically excitable cells proposes that Ca2+ entry is linked to the state of filling of intracellular Ca2+ stores. In the human T lymphocyte cell line Jurkat, stimulation of the antigen receptor leads to release of Ca2+ from internal stores and influx of extracellular Ca2+. Similarly, treatment of Jurkat cells with the tumor promoter thapsigargin induced release of Ca2+ from internal stores and also resulted in influx of extracellular Ca2+. Initiation of Ca2+ entry by thapsigargin was blocked by chelation of Ca2+ released from the internal storage pool. The Ca2+ entry pathway also could be initiated by an increase in the intracellular concentration of Ca2+ after photolysis of the Ca(2+)-cage, nitr-5. Thus, three separate treatments that caused an increase in the intracellular concentration of Ca2+ initiated Ca2+ influx in Jurkat cells. In all cases, Ca(2+)-initiated Ca2+ influx was blocked by treatment with any of three phenothiazines or W-7, suggesting that it is mediated by calmodulin. These data suggest that release of Ca2+ from internal stores is not linked capacitatively to Ca2+ entry but that initiation is linked instead by Ca2+ itself, perhaps via calmodulin.  相似文献   

4.
The G protein-coupled receptors in excitable cells have prominent roles in controlling Ca2+-triggered secretion by modulating voltage-gated Ca2+ influx. In pituitary lactotrophs, spontaneous voltage-gated Ca2+ influx is sufficient to maintain prolactin release high. Here we show that endothelin in picomolar concentrations can interrupt such release for several hours downstream of spontaneous and high K+-stimulated voltage-gated Ca2+ influx. This action occurred through the Gz signaling pathway; the adenylyl cyclase-signaling cascade could mediate sustained inhibition of secretion, whereas rapid inhibition also occurred at elevated cAMP levels regardless of the status of phospholipase C, tyrosine kinases, and protein kinase C. In a nanomolar concentration range, endothelin also inhibited voltage-gated Ca2+ influx through the G i/o signaling pathway. Thus, the coupling of seven-transmembrane domain endothelin receptors to Gz proteins provided a pathway that effectively blocked hormone secretion distal to Ca2+ entry, whereas the cross-coupling to G i/o proteins reinforced such inhibition by simultaneously reducing the pacemaking activity.  相似文献   

5.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

6.
Purinoceptor (P2X and P2Y) mediated Ca2+ signaling in cultured human microglia was studied using Ca2+ sensitive fluorescence microscopy. ATP (at 100 microM) induced a transient increase in [Ca2+]i in both normal and Ca(2+)-free solution suggesting a primary contribution by release from intracellular stores. This conclusion was further supported by the failure of ATP to cause a divalent cationic influx in Mn2+ quenching experiments. However, when fluorescence quenching was repeated after removal of extracellular Na+, ATP induced a large influx of Mn2+, indicating that inward Na+ current through a non-selective P2X-coupled channel may normally suppress divalent cation influx. Inhibition of Mn2+ entry was also found when microglia were depolarized using elevated external K+ in Na(+)-free solutions. The possibility of P2X inhibition of Ca2+ influx was then investigated by minimizing P2X contributions of purinergic responses using either the specific P2Y agonist, ADP-beta-S in the absence of ATP or using ATP combined with PPADS, a specific inhibitor of P2X receptors. In quenching studies both procedures resulted in large increases in Mn2+ influx in contrast to the lack of effect observed with ATP. In addition, perfusion of either ATP plus PPADS or ADP-beta-S alone caused a significantly enhanced duration (about 200%) of the [Ca2+]i response relative to that induced by ATP. These results show that depolarization induced by P2X-mediated Na+ influx inhibits store-operated Ca2+ entry resulting from P2Y activation, thereby modulating purinergic signaling in human microglia.  相似文献   

7.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry.  相似文献   

8.
Cross-linking the high affinity IgE receptor, Fc epsilon R1, with multivalent antigen induces inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-dependent release of intracellular Ca2+ stores, Ca2+ influx, and secretion of inflammatory mediators from RBL-2H3 mast cells. Here, fluorescence ratio imaging microscopy was used to characterize the antigen-induced Ca2+ responses of single fura-2-loaded RBL-2H3 cells in the presence and absence of extracellular Ca2+ (Ca2+o). As antigen concentration increases toward the optimum for secretion, more cells show a Ca2+ spike or an abrupt increase in [Ca2+]i and the lag time to onset of the response decreases both in the presence and the absence of Ca2+o. When Ca2+o is absent, fewer cells respond to low antigen and the lag times to response are longer than those measured in the presence of Ca2+o, indicating that Ca2+o contributes to Ca2+ stores release. Ins(1,4,5)P3 production is not impaired by the removal of Ca2+o, suggesting that extracellular Ca2+ influences Ca2+ stores release via an effect on the Ins(1,4,5)P3 receptor. Stimulation with low concentrations of antigen can lead, only in the presence of Ca2+o, to a small, gradual increase in [Ca2+]i before the abrupt spike response that indicates store release. We propose that this small, initial [Ca2+]i increase is due to receptor-activated Ca2+ influx that precedes and may facilitate Ca2+ stores release. A mechanism for capacitative Ca2+ entry also exists in RBL-2H3 cells. Our data suggest that a previously undescribed response to Fc epsilon R1 cross-linking, inhibition of Ca2+ stores refilling, may be involved in activating capacitative Ca2+ entry in antigen-stimulated RBL-2H3 cells, thus providing the elevated [Ca2+]i required for optimal secretion. The existence of both capacitative entry and Ca2+ influx that can precede Ca2+ release from intracellular stores suggests that at least two mechanisms of stimulated Ca2+ influx are present in RBL-2H3 cells.  相似文献   

9.
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.  相似文献   

10.
Florea SM  Blatter LA 《Cell calcium》2008,43(4):405-415
Oxidative stress imposed by the accumulation of oxygen free radicals (reactive oxygen species, ROS) has profound effects on Ca2+ homeostasis in the vascular endothelium, leading to endothelial dysfunctions and the development of cardiovascular pathologies. We tested the effect of the oxidant and ROS generator tert-butyl-hydroperoxide (tBuOOH) on Ca2+ signaling in single cultured calf pulmonary artery endothelial (CPAE) cells loaded with the fluorescent Ca2+ indicator indo-1. Acute brief (5 min) exposures to tBuOOH had no effect on basal cytosolic free Ca2+ ([Ca2+](i)), agonist (ATP)-induced Ca2+ release from the endoplasmic reticulum (ER) and on Ca(2+) store depletion-dependent capacitative Ca2+ entry (CCE). Prolonged (60 min) exposure to tBuOOH did not affect intracellular Ca2+ release, but caused a profound inhibition of CCE. After 120 min of treatment with tBuOOH not only was CCE further reduced, but also ATP-induced Ca2+ release due to a slow depletion of the stores that resulted from CCE inhibition. The antioxidant Trolox (synthetic vitamin E analog) prevented the inhibition of CCE by tBuOOH and attenuated the increase of [ROS](i), indicating that inhibition of CCE was due to the oxidant effects of tBuOOH. The data suggest that in vascular endothelial cells oxidative stress primarily affects Ca2+ influx in response to Ca2+ loss from internal stores. [Ca2+](i) is an important signal for the production and release of endothelium-derived factors such as nitric oxide (NO). Since CCE is the preferential Ca2+ source for NO synthase activation, the finding that oxidative stress inhibits CCE may explain how oxidative stress contributes to endothelial dysfunction-related cardiovascular pathologies.  相似文献   

11.
Changes in cytosolic free Ca2+ concentration [( Ca2+]i) due to Ca2+ entry or Ca2+ release from internal stores were spatially resolved by digital imaging with the Ca2+ indicator fura-2 in frog sympathetic neurons. Electrical stimulation evoked a rise in [Ca2+]i spreading radially from the periphery to the center of the soma. Elevated [K+]o also increased [Ca2+]i, but only in the presence of external Ca2+, indicating that Ca2+ influx through Ca2+ channels is the primary event in the depolarization response. Ca2+ release or uptake from caffeine-sensitive internal stores was able to amplify or attenuate the effects of Ca2+ influx, to generate continued oscillations in [Ca2+]i, and to persistently elevate [Ca2+]i above basal levels after the stores had been Ca2(+)-loaded.  相似文献   

12.
Removal of Ca(2+) from tobacco suspension cell medium has two immediate effects on cytosolic Ca(2+) fluxes: (i) externally derived Ca(2+) influx (occurring in response to cold shock or hypo-osmotic shock) is inhibited, and (ii) organellar Ca(2+) release (induced by a fungally derived defense elicitor, caffeine, or hypo-osmotic shock) is elevated. We show here that the enhanced release of internal Ca(2+) is likely due to increased discharge from a caffeine-sensitive store in response to a signal transduced from an extracellular Ca(2+) sensor. Thus, chelation of extracellular Ca(2+) in the absence of any other stimulus directly activates release of intracellular Ca(2+) into the cytosol. Evidence that this chelator-activated Ca(2+) flux is dependent on a signaling pathway includes its abrogation by prior treatment with caffeine, and its inhibition by protein kinase inhibitors (K252a and staurosporine) and anion channel blockers (niflumate and anthracene-9-carboxylate). An unexpected characteristic of tobacco cell adaptation to low external Ca(2+) was the emergence of a new Ca(2+) compartment that was inaccessible to external EGTA, yet responsive to the usual stimulants of extracellular Ca(2+) entry. Thus, cells that are exposed to EGTA for 20 min lose sensitivity to caffeine and defense elicitors, indicating that their intracellular Ca(2+) pools have been depleted. Surprisingly, these same cells simultaneously regain their ability to respond to stimuli that usually activate extracellular Ca(2+) influx even though all external Ca(2+) is chelated. Because this gradual restoration of Ca(2+) influx can be inhibited by the same kinase inhibitors that block EGTA-activated Ca(2+) release, we propose that chelator-activated Ca(2+) release from internal stores leads to deposition of this Ca(2+) into a novel EGTA- and caffeine-insensitive compartment that can subsequently be activated by stimulants of extracellular Ca(2+) entry.  相似文献   

13.
Calcium seems to be a major second messenger involved in the regulation of prostatic cell functions, but the mechanisms underlying its control are poorly understood. We investigated spatiotemporal aspects of Ca2+ signals in the LNCaP cell line, a model of androgen-dependent prostatic cells, by using non-invasive external electric field pulses that hyperpolarize the anode facing membrane and depolarize the membrane facing the cathode. Using high-speed fluo-3 confocal imaging, we found that an electric field pulse (10-15 V/cm, 1-5 mA, 5 ms) initiated rapidly, at the hyperpolarized end of the cell, a propagated [Ca2+]i wave which spread through the cell with a constant amplitude and an average velocity of about 20 microns/s. As evidenced by the total wave inhibition either by the block of Ca2+ entry or the depletion of Ca2+ stores by thapsigargin, a specific Ca(2+)-ATPase inhibitor, the [Ca2+]i wave initiation may imply a localized Ca2+ influx linked to a focal auto-regenerative process of Ca2+ release. Using different external Ca2+ and Ca2+ entry blockers concentrations, Mn2+ quenching of fluo-3 and fura-2 fluorescence and inhibitors of InsP3 production, we found evidence that the [Ca2+]i wave progression required, in the presence of basal levels of InsP3, an interplay between Ca2+ release from InsP3-sensitive Ca2+ stores and Ca2+ influx through channels possibly activated by the [Ca2+]i rise.  相似文献   

14.
Several regulated Ca2+ entry pathways have been identified, with capacitative Ca2+ entry (CCE) being the most characterized. In the present study, we examined Ca2+ entry pathways regulated by arachidonic acid (AA) in mouse parotid acini. AA induced Ca2+ release from intracellular stores, and increased Ca2+ entry. AA inhibited thapsigargin (Tg)-induced CCE, whereas AA activated Ca2+ entry when CCE was blocked by gadolinium (Gd3+). AA-induced Ca2+ entry was associated with depletion of calcium from ryanodine-sensitive stores; both AA-induced Ca2+ release and Ca2+ entry were inhibited by tetracaine and the nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI). The nitric oxide (NO) donor, 1,2,3,4-ox-triazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162), but not 8-bromo-cGMP, mimicked the effects of AA in inhibiting CCE. Results suggest that AA acts via nitric acid to inhibit the CCE pathway that is selective for Ca2+, and to activate a second Ca2+ entry pathway that is dependent on depletion of Ca2+ from ryanodine-sensitive stores.  相似文献   

15.
Jan CR  Tseng CJ  Chen WC 《Life sciences》2000,66(11):1053-1062
The effect of fendiline, a documented inhibitor of L-type Ca2+ channels and calmodulin, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca2+ probe. Fendiline at 5-100 microM significantly increased [Ca2+]i concentration-dependently. The [Ca2+]i rise consisted of an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM fendiline by reducing both the initial rise and the decay phase. This suggests that fendiline triggered external Ca2+ influx and internal Ca2+ release. In Ca(2+)-free medium, pretreatment with 50 microM fendiline nearly abolished the [Ca2+]i rise induced by 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, and vice versa, pretreatment with thapsigargin prevented fendiline from releasing internal Ca2+. This indicates that the internal Ca2+ source for fendiline overlaps with that for thapsigargin. At a concentration of 50 microM, fendiline caused Mn2+ quench of fura-2 fluorescence at the 360 nm excitation wavelenghth, which was inhibited by 0.1 mM La3+ by 50%, implying that fendiline-induced Ca2+ influx has two components separable by La3+. Consistently, 0.1 mM La3+ pretreatment suppressed fendiline-induced [Ca2+]i rise, and adding La3+ during the rising phase immediately inhibited the signal. Addition of 3 mM Ca2+ increased [Ca2+]i after preincubation with 50-100 microM fendiline in Ca(2+)-free medium. However, 50-100 microM fendiline inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 inhibited 50 microM fendiline-induced internal Ca2+ release by 48%, but inhibition of phospholipase C with 2 microM U73122 or inhibition of phospholipase D with 0.1 mM propranolol had no effect. Collectively, we have found that fendiline increased [Ca2+]i in MDCK cells by releasing internal Ca2+ in a manner independent of inositol-1,4,5-trisphosphate (IP3), followed by external Ca2+ influx.  相似文献   

16.
A rapid rise in the level of cytosolic free calcium ([Ca2+]i) is believed to be one of several early triggering signals in the activation of T lymphocytes by antigen. Although Ca2+ release from intracellular stores and its contribution to Ca2+ signaling in many cell types is well documented, relatively little is known regarding the role and mechanism of Ca2+ entry across the plasma membrane. We have investigated mitogen-triggered Ca2+ signaling in individual cells of the human T-leukemia-derived line, Jurkat, using fura-2 imaging and patch-clamp recording techniques. Phytohemagglutinin (PHA), a mitogenic lectin, induces repetitive [Ca2+]i oscillations in these cells peaking at micromolar levels with a period of 90-120 s. The oscillations depend critically upon Ca2+ influx across the plasma membrane, as they are rapidly terminated by removal of extracellular Ca2+, addition of Ca(2+)-channel blockers such as Ni2+ or Cd2+, or membrane depolarization. Whole-cell and perforated-patch recording methods were combined with fura-2 measurements to identify the mitogen-activated Ca2+ conductance involved in this response. A small, highly selective Ca2+ conductance becomes activated spontaneously in whole-cell recordings and in response to PHA in perforated-patch experiments. This conductance has properties consistent with a role in T-cell activation, including activation by PHA, lack of voltage-dependent gating, inhibition by Ni2+ or Cd2+, and regulation by intracellular Ca2+. Moreover, a tight temporal correlation between oscillations of Ca2+ conductance and [Ca2+]i suggests a role for the membrane Ca2+ conductance in generating [Ca2+]i oscillations in activated T cells.  相似文献   

17.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

18.
Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.  相似文献   

19.
The protein kinase Akt participates in such important functions of endothelial cells as nitric oxide production and angiogenesis, activities that involve changes in cytosolic Ca2+ concentration. However, it is not known if activation of Akt is itself involved in the regulation of Ca2+ signals produced in these cells. The objective of this study was to examine if Akt is involved in the regulation of Ca2+ signaling in endothelial cells. Agonist-stimulated Ca2+ signals, assessed using fura-2, were compared in porcine aortic endothelial cells under control conditions or conditions in which Akt was blocked either by different inhibitors of phosphatidylinositol 3-kinase (PI3 kinase)/Akt or by transient expression of a dominant-negative form of Akt (dnAkt). We found that the release of intracellular Ca2+ stores stimulated by bradykinin or thapsigargin is not affected by the PI3 kinase inhibitors LY294002 and wortmannin, or by expression of dnAkt. LY294002 dose-dependently inhibits store-operated Ca2+ entry, an effect not seen with wortmannin. Expression of dnAkt has no effect on store-operated Ca2+ entry. We conclude that Akt is not involved in the regulation of agonist-stimulated Ca2+ signals in endothelial cells. The compound LY294002 inhibits store-operated Ca2+ entry in these cells by a mechanism independent of PI3 kinase/Akt inhibition.  相似文献   

20.
Oscillation in [Ca2+]i induced by agonists has been described in many cell types and is thought to reflect Ca2+ release from and uptake into internal stores. We measured [Ca2+]i and Mn2+ entry in single cells of the pancreatic acinar cell line AR42J loaded with Fura 2 to examine the behavior of Ca2+ influx across the plasma membrane (Ca2+ entry) during agonist-evoked [Ca2+]i oscillation. Addition of extracellular Ca2+ (Ca2+out) to agonist-stimulated cells bathed in Ca2(+)-free medium resulted in a marked [Ca2+]i increase blocked by La3+. The use of Mn2+ as a congener of Ca2+ to follow unidirectional Ca2+ movement reveals an oscillatory activation of Ca2+ entry by Ca2(+)-mobilizing agonists. The frequency at which Ca2+ entry oscillated matched the frequency of Ca2+ release from intracellular stores. Ca2+ entry is activated after completion of Ca2+ release and is inactivated within the time span of each [Ca2+]i spike. These studies reveal a new aspect of [Ca2+]i oscillation in agonist-stimulated cells, that is the oscillatory activation of [Ca2+]i entry during [Ca2+]i oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号