首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The novel gene dia2 (differentiation-associated gene 2) was originally isolated as a gene expressed specifically in response to initial differentiation of Dictyostelium discoideum Ax-2 cells. Using dia2AS cells in which the dia2 expression was inactivated by the antisense RNA method, DIA2 protein was found to be required for cAMP signaling during cell aggregation. During late development, the DIA2 protein changed its location from the endoplasmic reticulum (ER) to prespore-specific vacuoles (PSVs) that are specifically present in prespore cells of the slug. In differentiating prestalk cells, however, DIA2 was found to be nearly lost from the cells. Importantly, exocytosis of PSVs from prespore cells and the subsequent spore differentiation were almost completely impaired in dia2AS cells. In addition, spore induction by externally applied 8-bromo cAMP was significantly suppressed in dia2AS cells. Taken together, these results strongly suggested that DIA2 might be closely involved in cAMP signaling and spore differentiation as well as in the initiation of differentiation during Dictyostelium development.  相似文献   

2.
Using synchronized Dictyostelium discoideum Ax-2 cells and the differential display method, a mitochondrial gene cluster (referred to as differentiation-associated gene 3; dia3) was isolated as one of the genes expressed specifically during the transition of Ax-2 cells from growth to differentiation. The dia3 gene encodes for a mitochondrial protein cluster (NADH dehydrogenase (NAD) subunit 11, 5, ribosomal protein S4 (RPS4), RPS2, and NAD4L). Northern blot analysis using nonsynchronized Ax-2 cells has shown that the dia3 RNA of about 8 kb is scarcely expressed during the vegetative growth phase, and the maximal expression was attained at 2 h after starvation. To analyze the gene function of dia3, we tried inactivation of rps4 by means of homologous recombination and obtained several transformed clones showing mitochondrial DNA heteroplasmy. The transformed cells grew normally in nutrient medium, but their development after starvation was greatly impaired, thus resulting in the failure of many cells to differentiate. In this connection, the cAMP receptor 1 (car1) expression, which is one of the earliest markers of differentiation, was found to be markedly reduced in the rps4-inactivated cells.  相似文献   

3.
Using synchronized Dictyostelium discoideum Ax‐2 cells and the differential display method, a mitochondrial gene cluster (referred to as differentiation‐associated gene 3; dia3) was isolated as one of the genes expressed specifically during the transition of Ax‐2 cells from growth to differentiation. The dia3 gene encodes for a mitochondrial protein cluster (NADH dehydrogenase (NAD) subunit 11, 5, ribosomal protein S4 (RPS4), RPS2, and NAD4L). Northern blot analysis using nonsynchronized Ax‐2 cells has shown that the dia3 RNA of about 8 kb is scarcely expressed during the vegetative growth phase, and the maximal expression was attained at 2 h after starvation. To analyze the gene function of dia3, we tried inactivation of rps4 by means of homologous recombination and obtained several transformed clones showing mitochondrial DNA heteroplasmy. The transformed cells grew normally in nutrient medium, but their development after starvation was greatly impaired, thus resulting in the failure of many cells to differentiate. In this connection, the cAMP receptor 1 (car1) expression, which is one of the earliest markers of differentiation, was found to be markedly reduced in the rps4‐inactivated cells. Dev. Genet. 25:339–352, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
The gene expressions involved in the transition from cell proliferation to differentiation were analyzed, using synchronized Dictyostelium discoideum Ax-2 cells and the differential plaque hybridization method. As one of the genes (cDNA) specifically expressed when Ax-2 cells were starved just before the putative shift (PS)-point (putative shift point; a switchover point from growth to differentiation in the cell cycle), calfumirin-1 ( CAF-1 ) was cloned, which encoded a novel calcium-binding protein with E-F hand. Although CAF-1 mRNA was slightly expressed in vegetatively growing cells, the expression was markedly increased in response to starvation of cells just before the PS-point. Northern analysis using non-synchronized Ax-2 cells showed that the CAF-1 mRNA is predominantly expressed within a few hours of starvation. Such a starvation-induced early expression of the CAF-1 mRNA raised a possibility that CAF-1 might be one of Ca2+-binding proteins involved in the phase-shift of cells from growth to differentiation.  相似文献   

5.
Differentiation inhibiting activity (DIA/LIF) and mouse development.   总被引:9,自引:0,他引:9  
Analysis of the differentiation in culture of murine embryonic stem (ES) cells has resulted in the identification and characterization of the regulatory factor differentiation inhibiting activity (DIA). DIA specifically suppresses differentiation of the pluripotential ES cells without compromise of their developmental potential. DIA is identical to the pleiotropic cytokine leukaemia inhibitory factor (LIF) which has a broad range of biological activities in vitro and in vivo. It is produced in both diffusible and matrix-localised forms whose expression is differentially regulated. The compartmentalization of DIA/LIF and the modulation of its expression during stem cell differentiation and by other cytokines may be significant elements in the control of early embryo development. These features may also indicate general principles of the regulatory networks which govern stem cell renewal and differentiation in later development.  相似文献   

6.
7.
Abstract: Extension of the neuronal process is a crucial step for establishment of the neuronal network. As CREB preferentially forms heterodimers with ATF1 in PC12D cells, we examined the roles of the CREB/ATF1 heterodimer on cyclic AMP (cAMP)-induced neurite extension, using originally constructed ATF1RL, which has a point mutation at the DNA binding domain of ATF1. Transient expression of ATF1RL suppressed the protein kinase A/CREB-induced expression of the CRE reporter gene as expected. Treatment with forskolin elicited a relatively poor mRNA induction for immediate early genes in PC12D-ATF1RL cells, a PC12D cell line stably expressing ATF1RL, in comparison with the parental PC12D cells. Furthermore, the PC12D-ATF1RL cells were proved to be defective at cAMP-induced neurite outgrowth. In contrast, both the gene expression and the differentiation after nerve growth factor treatment noted in PC12D-ATF1RL cells were at the same levels as those in the parental cells. These data provide us the first evidence that links CREB/ATF1 to the cAMP-induced differentiation of PC12 cells.  相似文献   

8.
Mutations in the presenilin 1 and 2 (PS1 and PS2) genes cause most cases of early onset Alzheimer's disease. The genes encode two homologous multipass membrane proteins. Since the endogenous expression of PS2 has been poorly analyzed to date, we studied PS2 expression and localization in cultured human neuroblastoma cells and mouse neuronal cells. PS2 was mainly detected as a full-length protein of about 52 kDa in these cells and in brain, in contrast to PS1 that is mainly detected as endoproteolytic N-terminal and C-terminal fragments. Using immunofluorescence we found that like PS1, PS2 colocalized with markers of the endoplasmic reticulum-Golgi intermediate compartment, ERGIC-53 and beta-COP. Double labeling for PS1 and PS2 indicated that both proteins are colocalized in neuroblastoma SH-SY5Y cells. To study PS2 expression during differentiation, mouse embryonic carcinoma P19 cells were treated with retinoic acid. We found minimal PS2 expression in undifferentiated cells, an increase from day 2, and a maximum at day 8 after treatment. PS1 expression remained constant during this period. The differential expression of PS1 and PS2 within the P19 cells following retinoic acid treatment indicates different utilization or temporal requirements for these proteins during neuronal differentiation.  相似文献   

9.
Elevation of the intracellular cAMP level induces morphological changes of astrocyte-like differentiation in C6 glioma cells. Such changes may be accompanied with expression of cytoskeletal protein genes. We therefore analyzed morphological changes after a treatment with dibutyryl cAMP (dbcAMP) and then assessed the expression of cytoskeletal protein genes by a quantitative real-time polymerase chain reaction. The cell number remained unaltered upon incubation with 1 mM dbcAMP in medium supplemented with 0.1% fetal bovine serum (FBS), whereas the number and lengths of processes increased, when compared with those of cells incubated in medium supplemented with 0.1% or 10% FBS only. The amounts of β-actin, γ-actin, and β-tubulin mRNAs in C6 cells, but not α-tubulin mRNA, increased during the early proliferation in DMEM containing 10% FBS. The expression of cytoskeletal protein genes decreased when incubated with 0.1% FBS or 1 mM dbcAMP in 0.1% FBS, compared with those of cells cultured in 10% FBS. These results indicated that, during the early proliferation in normal culture condition, the expression of cytoskeletal protein genes in C6 cells, except α-tubulin, increased, while in differentiating or differentiated C6 glioma cells, cAMP-induced morphological changes were not accompanied with elevation of gene expression for cytoskeletal proteins, such as actin and tubulin.  相似文献   

10.
11.
Serpentine receptors such as smoothened and frizzled play important roles in cell fate determination during animal development. In Dictyostelium discoideum, four serpentine cyclic AMP (cAMP) receptors (cARs) regulate expression of multiple classes of developmental genes. To understand their function, it is essential to know whether each cAR is coupled to a specific gene regulatory pathway or whether specificity results from the different developmental regulation of individual cARs. To distinguish between these possibilities, we measured gene induction in car1 car3 double mutant cell lines that express equal levels of either cAR1, cAR2, or cAR3 under a constitutive promoter. We found that all cARs efficiently mediate both aggregative gene induction by cAMP pulses and induction of postaggregative and prespore genes by persistent cAMP stimulation. Two exceptions to this functional promiscuity were observed. (i) Only cAR1 can mediate adenosine inhibition of cAMP-induced prespore gene expression, a phenomenon that was found earlier in wild-type cells. cAR1’s mediation of adenosine inhibition suggests that cAR1 normally mediates prespore gene induction. (ii) Only cAR2 allows entry into the prestalk pathway. Prestalk gene expression is induced by differentiation-inducing factor (DIF) but only after cells have been prestimulated with cAMP. We found that DIF-induced prestalk gene expression is 10 times higher in constitutive cAR2 expressors than in constitutive cAR1 or cAR3 expressors (which still have endogenous cAR2), suggesting that cAR2 mediates induction of DIF competence. Since in wild-type slugs cAR2 is expressed only in anterior cells, this could explain the so far puzzling observations that prestalk cells differentiate at the anterior region but that DIF levels are actually higher at the posterior region. After the initial induction of DIF competence, cAMP becomes a repressor of prestalk gene expression. This function can again be mediated by cAR1, cAR2, and cAR3.Recent years have seen the discovery of critical roles in animal development for serpentine receptors, which are usually coupled to heterotrimeric G proteins. The insect sigaling peptides hedgehog and wingless and their mammalian counterparts sonic hedgehog, desert hedgehog, and indian hedgehog and the wnt factors control a multitude of inductive events during all stages of embryogenesis. The hedgehog signal is detected by two different serpentine receptors, smoothened (1, 40) and patched (21, 38), whereas the wingless or wnt signal is detected by the serpentine receptor D-frizzled-2 (3). In the social amoeba Dictyostelium discoideum, serpentine cyclic AMP (cAMP) receptors (cARs) control induction of cell differentiation during the entire course of development. Starving cells secrete cAMP pulses that induce chemotaxis and expression of genes required for the aggregation process. Cells aggregate to form mounds, which ultimately transform into fruiting structures that consist of a globular spore mass supported by a column of stalk cells. cAMP induces entry into the spore differentiation pathway as well as synthesis of a lipophilic factor, differentiation-inducing factor (DIF), which induces entry into the stalk differentiation pathway (see reference 5). At an early stage of development cAMP synergizes with DIF to induce prestalk genes, but later it becomes an inhibitor of stalk gene expression (2). cARs were shown previously to mediate induction of aggregative genes by cAMP pulses (20) as well as cAMP induction of prespore genes and repression of prestalk genes (31, 37). Remarkably, the target for the latter critical step in cell fate determination is glycogen synthase kinase 3 (GSK-3), a zeste white-3 homolog, which is the target for the effects of wingless and wnt in insects and vertebrates, respectively (7, 34).Four cARs, showing 54 to 69% amino acid identity, are expressed in a stage- and cell-type-specific manner. cAR1 is predominantly expressed before and during aggregation (18). cAR3 is expressed at late aggregation, and expression is later restricted to the prespore cell population (13, 44). cAR2 and cAR4 are both expressed exclusively in the prestalk cell population after aggregation (19, 30). cAR knockout cell lines were generated to examine the role of the individual cARs in Dictyostelium development. car1 null cells neither aggregate nor express developmental genes but can be triggered to express aggregative and postaggregative genes by stimulation with cAMP (37, 39). car3 null cells aggregate and develop normally (13). car1 car3 double gene disruptants do not aggregate, and developmental gene expression cannot be restored with cAMP, indicating that cAR1 or cAR3 shows functional redundancy and that either one or the other has to be present for gene induction to occur (10, 36). car2 null cells are blocked in the mound stage, while car4 null cells show abnormal slug morphogenesis and culmination. Both lines show reduced expression of prestalk genes and enhanced expression of prespore genes (19, 29).To understand the function of the four cARs, it is essential to know whether each receptor is coupled to a specific signal transduction pathway that controls a specific cell differentiation event or whether each receptor can activate multiple cell differentiation pathways. In the latter case, it is not the presence of a specific receptor that determines whether a response occurs but the availability of the downstream signaling pathway. To determine whether individual receptors have unique functions in developmental gene expression, we examined gene regulation in cell lines that display about equal levels of cAR1, cAR2, and cAR3 in a car1 car3 mutant background. Our results show that with two exceptions, all three receptors can transduce both the excitation and adaptation components of the different cAMP-regulated gene induction events with almost equal levels of efficiency.  相似文献   

12.
13.
14.
15.
Stimulation of pheochromocytoma PC12 cells by cAMP-elevating agents caused the induction of the immediate early gene 3CH134, which encodes MAP kinase phosphatase-1 (MKP-1). Forskolin was as potent as serum in stimulating MKP-1 gene expression, whereas dibutyryl-cAMP and neuropeptide PACAP were less effective. Induction of the MKP-1 gene was accompanied by neo-synthesis of MKP-1 protein. MAP kinase activation was not involved in the cAMP-induced MKP-1 gene expression. The MAP kinase inactivation, that would result from MKP-1 induction in response to increased intracellular cAMP level, contributes to explain how hormones or neurotransmitters signaling through cAMP influence cell growth and differentiation.  相似文献   

16.
We have reported previously that expression of the human apolipoprotein E (apoE) gene in mouse Y1 adrenocortical cells suppresses basal and adrenocorticotropin (ACTH)-stimulated steroidogenesis. To understand the mechanism of this suppression, we have examined the integrity of cAMP regulated events required for adrenal steroidogenesis. Both acute and chronic responses to ACTH or cAMP are suppressed in Y1 cells which express apoE (Y1-E cells) as compared with parental Y1 cells. Acute morphologic changes in response to cAMP and acute induction of steroidogenesis by cAMP are suppressed in the Y1-E cell lines. Constitutive expression of P450-cholesterol side chain cleavage enzyme mRNA, the rate-limiting enzyme in steroid hormone synthesis, is reduced up to 11-fold in the Y1-E cell lines. The level of mRNA encoding P450-cholesterol side chain cleavage correlates directly with the reduction in basal steroid production observed in the individual Y1-E cell lines. Expression of P450-11 beta-hydroxylase mRNA, although readily detectable in Y1 parent cells, is absent or reduced in the Y1-E cell lines. Inhibition of cAMP-regulated gene expression is not restricted to genes required for steroid synthesis, since cAMP induction of ornithine decarboxylase mRNA is also inhibited in the Y1-E cell lines. These data indicate that suppression of steroidogenesis in Y1-E cells is due, at least in part, to inhibition of cAMP-regulated gene expression. These effects are not due to a defective cAMP-dependent protein kinase, since kinase activity in vitro and activation in vivo are unaltered in the Y1-E cell lines. These results suggest that expression of apoE in Y1 cells blocks cAMP-mediated signal transduction at a point distal to activation of cAMP-dependent protein kinase.  相似文献   

17.
18.
Premature ovarian failure (POF) is a defect of ovarian development and is characterized by primary or secondary amenorrhea, with elevated levels of serum gonadotropins, or by early menopause. The disorder has been attributed to various causes, including rearrangements of a large "critical region" in the long arm of the X chromosome. Here we report identification, in a family with POF, of a gene that is disrupted by a breakpoint. The gene is the human homologue of the Drosophila melanogaster diaphanous gene; mutated alleles of this gene affect spermatogenesis or oogenesis and lead to sterility. The protein (DIA) encoded by the human gene (DIA) is the first human member of the growing FH1/FH2 protein family. Members of this protein family affect cytokinesis and other actin-mediated morphogenetic processes that are required in early steps of development. We propose that the human DIA gene is one of the genes responsible for POF and that it affects the cell divisions that lead to ovarian follicle formation.  相似文献   

19.
20.

Introduction

Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades of accumulated research. In contrast, the experience base is limited for materials used in microfludics chip fabrication.

Methods

The effect of different materials (PS, PMMA and perforated PMMA with a piece of PDMS underneath) on the growth and differentiation of PC12 (adrenal phaeochromocytoma) cells into neuronal-like cells was investigated using cell viability, cell cycle distribution, morphology, and gene expression analysis.

Results/Conclusions

After differentiation, the morphology, viability and cell cycle distribution of PC12 cells grown on PS, PMMA with and without PDMS underneath was the same. By contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development and function. However, there were also many markers for neuronal cell development and functions that were expressed similarly in cells differentiating on PS, PMMA and PMMA with PDMS underneath. In conclusion, it was shown that PMMA has a minor impact and PDMS a major impact on gene expression in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号