首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some aspects of the ATPase function of the Escherichia coli Lon protease were studied around the optimum pH value. It was revealed that, in the absence of the protein substrate, the maximum ATPase activity of the enzyme is observed at an equimolar ratio of ATP and Mg2+ ions in the area of their millimolar concentrations. Free components of the substrate complex (ATP-Mg)2- inhibit the enzyme ATPase activity. It is hypothesized that the effector activity of free Mg2+ ions is caused by the formation of the "ADP-Mg-form" of the ATPase centers. It was shown that the activation of ATP hydrolysis in the presence of the protein substrate is accompanied by an increase in the affinity of the (ATP-Mg)2- complex to the enzyme, by the elimination of the inhibiting action of free Mg2+ ions without altering the efficiency of catalysis of ATP hydrolysis (based on the kcat value), and by a change in the type of inhibition of ATP hydrolysis by the (ADP-Mg)- complex (without changing the Ki value). Interaction of the Lon protease protein substrate with the enzyme area located outside the peptide hydrolase center was demonstrated by a direct experiment.  相似文献   

2.
In addition to protease La (the lon gene product), Escherichia coli contains another ATP-dependent protease, Ti. This enzyme (approximately 340 kDa) is composed of two components, both of which are required for proteolysis. Both have been purified to homogeneity by conventional procedures using [3H]casein as the substrate. The ATP-stabilized component, A, has a subunit molecular weight of 80,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate, but it behaves as a dimer (140 kDa) upon gel filtration. Component P, which is relatively heat stable, is inactivated by diisopropyl fluorophosphate and can be labeled with [3H] diisopropyl fluorophosphate. It has a subunit size of 23 kDa, but the isolated component behaves as a complex (260 kDa) of 10-12 subunits. The isoelectric point of component A is 7.0 and that of P is 8.2, and their amino acid compositions differ considerably. The purified enzyme has an ATPase activity that is stimulated 2-4-fold by casein and other protein substrates but not by nonhydrolyzed proteins. Component A also shows ATPase activity which can be stimulated by casein. Addition of component P (which lacks ATPase activity) inhibits basal ATP hydrolysis by A and makes this ATPase more responsive to casein. Although component P contains the serine active site for proteolysis, it shows no proteolytic activity in the absence of component A, Mg2+, and ATP or dATP. Other nucleoside triphosphates are not hydrolyzed and do not support proteolysis. Protease Ti has a Km for ATP of 210 microM for hydrolysis of both casein and ATP. Casein increases the Vmax for ATP without affecting the Km. A Mg2+ concentration of 5 mM is necessary for half-maximal rates of ATP and casein hydrolysis. Ca2+ and Mn2+ partially support these activities. Thus, protease Ti shares many unusual properties with protease La (e.g. coupled ATP and protein hydrolysis and protein-activated ATPase), but these functions in protease Ti are associated with distinct subunits that modify each other's activities.  相似文献   

3.
G Inesi  J A Cohen  C R Coan 《Biochemistry》1976,15(24):5293-5298
The "total" ATPase activity of rabbit sarcoplasmic reticulum (SR) vesicles includes a Ca2+-independent component ("basic") and Ca2+-dependent component ("extra"). Only the "extra" ATPase is coupled to Ca2+ transport. These activities can be measured under conditions in which the observed rates approximate maximal velocities. The "basic" ATPase is predominant in one of the various SR fractions obtained by prolonged density-gradient centrifugation of SR preparations already purified by repeated differential centrifugations and extractions at high ionic strength. This fraction (low dnesity, high cholesterol) has a protein composition nearly identical with that of other SR fractions in which the "extra" ATPase is predominant. In these other fractions the ratio of "extra" to "basic" ATPase activities is temperature dependent, being approximately 9.0 at 40 degrees C and 0.5 at 4 degrees C. In all the fractions and at all temperatures studied, similar steady-state levels of phosphorylated SR protein are obtained in the presence of ATP and Ca2+. Furthermore, in all cases the "basic" (Ca2+-independent) ATPase acquires total Ca2+ dependence upon addition of the nonionic detergent Triton X-100. This detergent also transforms the complex substrate dependence of the SRATPase into a simple dependence, displaying a single value for the apparent Km. The experimental findings indicate that the ATPase of rabbit SR exists in two distinct functional states (E1 and E2), only one of which (E2) is coupled to Ca2+ transport. The E1 in equilibrium E2 equilibrium is temperature-dependent and entropy-driven, indicative of its relation to the physical state of the ATPase protein in its membrane environment. Thenonlinearity of Arrhenius plots of Ca2+-dependent ("extra") ATPase activity and Ca2+ transport is explained in terms of simultaneous contribtuions from both the free energy of activation of enzyme catalysis and the free energy of conversion of E1 to E2. Thermal equilibrium between the two functional states is drastically altered by factors which affect membrane structure and local viscosity.  相似文献   

4.
Protease Ti, a new ATP-dependent protease in Escherichia coli, degrades proteins and ATP in a linked process, but these two hydrolytic functions are catalyzed by distinct components of the enzyme. To clarify the enzyme's specificity and the role of ATP, a variety of fluorogenic peptides were tested as possible substrates for protease Ti or its two components. Protease Ti rapidly hydrolyzed N-succinyl(Suc)-Leu-Tyr-amidomethylcoumarin (AMC) (Km = 1.3 mM) which is not degraded by protease La, the other ATP-dependent protease in E. coli. Protease Ti also hydrolyzed, but slowly, Suc-Ala-Ala-Phe-AMC and Suc-Leu-Leu-Val-Tyr-AMC. However, it showed little or no activity against basic or other hydrophobic peptides, including ones degraded rapidly by protease La. Component P, which contains the serine-active site, by itself rapidly degrades the same peptides as the intact enzyme. Addition of component A, which contains the ATP-hydrolyzing site and is necessary for protein degradation, had little or no effect on peptide hydrolysis. N-Ethylmaleimide, which inactivates the ATPase, did not inhibit peptide hydrolysis. In addition, this peptide did not stimulate the ATPase activity of component A (unlike protein substrates). Thus, although the serine-active site on component P is unable to degrade proteins, it is fully functional against small peptides in the absence of ATP. At high concentrations, Suc-Leu-Tyr-AMC caused a complete inhibition of casein breakdown, and diisopropylfluorophosphate blocked similarly the hydrolysis of both protein and peptide substrates. Thus, both substrates seem to be hydrolyzed at the same active site on component P, and ATP hydrolysis by component A either unmasks or enlarges this proteolytic site such that large proteins can gain access to it.  相似文献   

5.
ATP-dependent proteases in prokaryotic and eukaryotic cells   总被引:2,自引:0,他引:2  
  相似文献   

6.
The absence of direct correlation between the efficiency of functioning of ATPase and peptide hydrolase sites of Lon protease was revealed. It was shown that Lon protease is an allosteric enzyme, in which the catalytic activity of peptide hydrolase sites is provided by the binding of nucleotides, their magnesium complexes, and free magnesium ions in the enzyme ATPase sites. It was revealed that the ADP–Mg complex, an inhibitor of the native enzyme, is an activator of the Lon-K362Q (the Lon protease mutant in the ATPase site). Variants of functional contacts between different sites of the enzyme are considered. It was established that two ways of signal transduction from the ATPase sites to peptide hydrolase ones exist in the Lon protease oligomer--intra- and intersubunit ways. The enzyme ATPase sites are suggested to be located in the areas of the complementary surfaces of subunits. It is hypothesized that upon degradation of protein substrates by the E. coliLon protease in vivoATP hydrolysis acts as a factor of limitation of the enzyme degrading activity.  相似文献   

7.
The action of the natural ATPase inhibitor protein of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) on the mechanisms of energy conservation of heart mitochondria has been explored. The synthesis and hydrolysis of ATP and the Pi-ATP exchange reaction were studied in submitochondrial particles that possess the ATPase-inhibitor protein complex in two distinguishable states. In addition to their different rates of hydrolysis, the two states of the complex have been identified from their different accessibility to antibodies directed against the inhibitor protein, and from the different action of antibodies and trypsin on the ATPase activity of the two types of particles studied. The steady state rates of hydrolysis and of the Pi-ATP exchange reaction of the particles are determined by the state in which the ATPase-inhibitor complex exists. Apparently by modifying the rate of one of the steps involved in the catalytic reaction of the ATPase, the inhibitor protein determines the extent to which the enzyme is able to catalyze ATP hydrolysis and the Pi-ATP exchange reaction. This action of the inhibitor protein also reflects the rate at which the particles carry out oxidative phosphorylation.  相似文献   

8.
The absence of direct correlation between the efficiency of functioning of ATPase and peptidehydrolase sites of Lon protease was revealed. It was shown that Lon protease is an allosteric enzyme, in which the catalytic activity of peptidehydrolase sites is determined by the binding of nucleotides, their magnesium complexes, and free magnesium ions in the enzyme's ATPase sites. It was revealed that complex ADP-Mg, an inhibitor of the native enzyme, is an activator of the Lon-K362Q form of the Lon protease mutant in the ATPase site. Considered are variants of intersite functional contacts realizing in the enzyme. The existence of two ways of signal transduction was established from the ATPase sites to peptidehydrolase ones in the Lon protease oligomer--intra- and intersubunit ways. Location of the enzyme ATPase sites is suggested in the areas of the complementary surfaces of subunits. It is hypothesized that ATP hydrolysis upon degradation of protein substrates by the E. coli Lon protease in vivo acts as a factor of restriction of the enzyme's degrading activity.  相似文献   

9.
Thapsigargin (TG), a plant sesquiterpene lactone extract, interacts tightly with the sarcoplasmic reticulum (SR) Ca2+ transport ATPase yielding a 1:1 stoichiometric complex. In addition to inhibiting steady state enzyme activity, TG can be shown to inhibit two individual partial reactions of the ATPase cycle (i.e. Ca2+ binding in the absence of ATP and enzyme phosphorylation by Pi in the absence of Ca2+) even when these reactions are studied separately without interdependence. As the two partial reactions occur at domains relatively distant from each other in the protein structure, it is apparent that the TG induced perturbation involves the entire enzyme. The rate of TG interaction with the ATPase, as estimated by the onset of functional inhibition and by the development of an intrinsic fluorescence signal, is relatively low in the presence of Ca2+. The interaction is much faster when Ca2+ is removed from the medium by the addition of EGTA or is dissociated from the enzyme by utilization of ATP. When the TG interaction with the ATPase is studied in the presence of Ca2+ as a function of temperature (15-35 degrees C) and pH (6.0-8.0), two distinct kinetic components are observed: a fast component which is prevalent at high temperature and low pH, and a slow component which is prevalent at low temperature and high pH. This pattern suggests that the enzyme resides in two states, whose relatively slow equilibration is temperature- and pH-dependent. As only one state is reactive to TG, the enzyme population residing in this state reacts immediately with TG. On the other hand, the enzyme population residing in the alternate state must undergo slow conversion to the reactive state before being affected by TG. It can be also demonstrated that in the presence of Ca2+ TG shifts the ATPase from a refractory state to a state which is able to form bidimensional crystalline arrays stabilized by decavanadate. It is concluded that TG reacts specifically with the ATPase conformation which is prevalent in the absence of Ca2+, thereby forming a catalytically inactive dead-end complex.  相似文献   

10.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

11.
The content of an intrinsic ATPase inhibitor in mitochondria was determined by a radioimmunoassay procedure which showed the molar ratio of the inhibitor to ATPase to be 1:1. The ratio in submitochondrial particles, where half of the enzyme was activated, was the same as that of mitochondria, indicating that the inhibitor protein has affinity for the mitochondrial membrane as well as for F1-ATPase. The inhibitor protein could be removed from the mitochondrial membrane by incubation with 0.5 M Na2SO4 and concomitantly the enzyme was fully activated. The enzyme fully activated by the salt treatment was inactivated again by the externally added ATPase inhibitor in the presence of ATP and Mg2+. The enzyme-inhibitor complex (inactive) on the mitochondrial membrane was more stable than the solubilized enzyme-inhibitor complex but gradually dissociated in the absence of ATP and Mg2+. However, in mitochondria, the enzyme activity was inhibited even in the absence of the cofactors. A protein factor stabilizing the enzyme-inhibitor complex on the mitochondrial membrane was isolated from yeast mitochondria. This factor stabilized the inhibitor complex of membrane-bound ATPase while having no effect on that of purified F1-ATPase. It also efficiently facilitated the binding of the inhibitor to membrane-bound ATPase to form the complex, which reversibly dissociated at slightly alkaline pH.  相似文献   

12.
A regulatory subunit of yeast mitochondrial ATP synthase, 9K protein, formed an equimolar complex with F1-ATPase in the presence of ATP and Mg2+, indicating that the binding of the protein to the enzyme took place in a similar manner to that of ATPase inhibitor. The ATP-hydrolyzing activity of F1-ATPase decreased 40% on binding of the 9K protein, and the remaining activity was resistant to external ATPase inhibitor. The apparent dissociation constant of the F1-ATPase-9K complex was determined by gel permeation chromatography to be 3.7 X 10(-6) M, which was in the same order of magnitude as that of enzyme-ATPase inhibitor complex (4.2 x 10(-6) M). When added simultaneously the binding of the inhibitor and 9K protein to F1-ATPase were competitive and the sum of their bindings did not exceed 1 mol per mol of enzyme. However, the binding of each protein ligand to F1-ATPase took more than 1 min for completion, and when one of these two proteins was added 10 min after the other, it did not replace the other. These observations strongly suggest that membrane-bound F1-ATPase always binds to either the 9K protein or ATPase inhibitor in intact mitochondria and that the complexes with the two ligands are active and inactive counterparts, respectively.  相似文献   

13.
Micrococcus lysodeikticus ATPase was purified by preparative gel electrophoresis after its "shodk wash" release from the membrane. The method afforded the highest yield of pure protein in the minimum time as compared with former purification procedures. The pure protein had a specific activity of 7 mumol Pi-min- minus 1-mg- minus 1 with incubation times not longer than 3 min, 345 000 mol. wt and was not stimulated by trypsin. By gel electrophoresis at alkaline pH (8.5) in 8 M urea or in sokium dodecylsulfate, the ATPase revealed a complex pattern with two major subunits (alpha and beta) and two minor ones (gamma and delta). The non-identity between the major subunits was demonstrated.  相似文献   

14.
G Vogel  R Steinhart 《Biochemistry》1976,15(1):208-216
A simple procedure for the purification of Mg2+-stimulated ATPase of Escherichia coli by fractionation with poly(ethylene glycols) and gel filtration is described. The enzyme restores ATPase-linked reactions to membrane preparations lacking these activities. Five different polypeptides (alpha, beta, gamma, delta, epsilon) are observed in sodium dodecyl sulfate electrophoresis. Freezing in salt solutions splits the enzyme complex into subunits which do not possess any catalytic activity. The presence of different subunits is confirmed by electrophoretic and immunological methods. The active enzyme complex can be reconstituted by decreasing the ionic strength in the dissociated sample. Temperature, pH, protein concentration, and the presence of substrate are each important determinants of the rate and extent of reconstitution. The dissociated enzyme has been separated by ion-exchange chromatography into two major fragments. Fragment IA has a molecular weight of about 100000 and contains the alpha, gamma, and epsilon polypeptides. The minor fragment, IB, has about the same molecular weight but contains, besides alpha, gamma, and epsilon, the delta polypeptide. Fragment II, with a molecular weight of about 52000, appears to be identical with the beta polypeptide. ATPase activity can be reconstituted from fragments IA and II, whereas the capacity of the ATPase to drive energy-dependent processes in depleted membrane vesicles is only restored after incubation of these two fractions with fraction IB, which contains the delta subunit.  相似文献   

15.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
A protein has been studied which spontaneously precipitates from stored fractions of platelet soluble phase prepared by density gradient centrifugation. It is rich in a Ca2+ ATPase activity which displays an activity/pH profile resembling that of skeletal muscle myosin. Adjustment of freshly prepared soluble phase fractions to 0.6 M with respect to KCl and dilution 1 in 3 results in the precipitations of a protein fraction with essentially the same enzymatic properties as the spontaneously precipitable protein. These two similar proteins represent between 9 and 13% of the soluble phase total protein and each account for almost the whole of divalent cation activated ATPase activity of the soluble phases from which they were derived. The Mg2+ ATPase activity is only about twice purified with respect to the soluble phase enzyme activity, but the Ca2+ ATPase shows a 10-13-fold enrichment. Synthetic actomyosins can be prepared from the two proteins by addition of either platelet or skeletal muscle actin. These show significant increases in Mg2+ ATPase at the most favourable combination ratios. The ratio between the yield of soluble phase protein obtained by dilution precipitation and the lactate dehydrogenase activity of the soluble phase remains constant under a wide range of homogenization and sonication conditions applied to the original whole platelet suspensions. This confirms our earlier view that the soluble phase is a valid intracellular compartment for a considerable proportion of the platelet contractile protein and that in the complex the myosin-like component predominates.  相似文献   

17.
Catalysis of ATP hydrolysis by two NH(2)-terminal fragments of yeast DNA topoisomerase II was studied in the absence and presence of DNA, and in the absence and presence of inhibitor ICRF-193. The results indicate that purified Top2-(1-409), a fragment containing the NH(2)-terminal 409 amino acids of the yeast enzyme, is predominantly monomeric, with a low level of ATPase owing to weak association of two monomers to form a catalytically active dimer. The ATPase activity of Top2-(1-409) is independent of DNA in a buffer containing 100 mM NaCl, in which intact yeast DNA topoisomerase II exhibits robust DNA-dependent ATPase and DNA transport activities. Purified Top2-(1-660), a fragment containing the NH(2)-terminal 660 amino acid of the yeast enzyme, appears to be dimeric in the absence or presence of DNA, and the ATPase activity of the protein is significantly stimulated by DNA. These results are consistent with a model in which binding of an intact DNA topoisomerase II to DNA places the various subfragments of the enzyme in a way that makes the intramolecular dimerization of the ATPase domains more favorable. We believe that this alignment of subfragments is mainly achieved through the binding of the enzyme to the DNA segment within which the enzyme makes transient breaks. The ATPase activity of Top2-(1-409) is inhibited by ICRF-193, suggesting that the bisdioxopiperazine class of DNA topoisomerase II inhibitors directly interacts with the paired ATPase domains of the enzyme.  相似文献   

18.
A phospholipid-stimulated adenosine triphosphatase (ATPase) complex was solubilized and partially purified from membrane particles of Escherichia coli ML308-225. The complex was of large molecular size and contained 16 polypeptides, five of which were subunits of the F1-type ATPase of E. coli. Components of the respiratory chain were absent. Enzyme activity was stimulated by lysophosphatidylcholine, phosphatidylcholine, phosphatidylglycerol, and cardiolipin but not by phosphatidylethanolamine. The ATPase activity of the complex was inhibited by N,N′-dicyclohexylcarbodiimide and by Dio-9 at lower inhibitor:protein ratios than required for inhibition of the F1-type ATPase of E. coli. However, the ATPase complex was less sensitive than the membrane-bound enzyme to inhibition by these compounds.  相似文献   

19.
L C Cantley  G G Hammes 《Biochemistry》1975,14(13):2968-2975
A study of the equilibrium binding of ADP, 1,N6-ethenoadenosine diphosphate, adenylyl imidodiphosphate, and 1,N6-ethenoadenylyl imidodiphosphate to solubilized spinach chloroplast coupling factor 1 (CF1) has been carried out. All four nucleotides were found to bind to two apparently identical "tight" sites, with characteristic dissociation contants generally less than 10 muM. The binding to these "tight" sites is similar in the presence of Mg2+ and Ca2+, is stronger in 0.1 M NaC1 than in 20 mM Tris-C1, and is only slightly altered by heat activation. The slow rate of association of ADP and 1,N6-ethenoadenosine diphosphate at these sites rules out the possibility that they are catalytic sites for ATPase activity on the solubilized enzyme. A third tight site for adenylyl imidodiphosphate was found on the heat-activated enzyme. The dissociation constant for this interaction (7.6 muM) is similar to the adenylyl imidodiphosphate competitive inhibition constant for ATPase activity (4 muM). ADP, which inhibits ATPase activity but is not a strong competitive inhibitor, binds only weakly at a third site (dissociation constant greater than 70 muM). One mole of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted per mole of CF1 prevents ADP and adenylyl imidodiphosphate binding at the "catalytic" site and abolishes the ATPase activity. A model is proposed in which the "tight" nucleotide binding sites act as allosteric conformational switches for the ATPase activity of solubilizedCF1.  相似文献   

20.
1. Prolonged treatment of coupling factor I (CF1) from spinach chloroplasts with trypsin free of chymotrypsin yielded an active ATPase. The isolated preparation showed only two polypeptide chains (mol wt 55,000 to 60,000) on acrylamide gels run in the presence of sodium dodecyl sulfate. The three smaller subunits of CF1 were not detectable. The preparation no longer served as a coupling factor for photophosphorylation in either EDTA- or silicotungstate-treated chloroplasts. 2. An antiserum prepared against coupling factor I from chloroplasts inhibited the ATPase activity of the trypsin-treated CF1. In contrast, antisera prepared against the two individual (denatured) subunits did not inhibit the ATPase activity when tested either alone or together, although each interacted with the trypsin-treated protein, forming precipitin lines in Ouchterlony plates. 3. The trypsin-treated enzyme was still cold-labile, showing that the three smaller subunits are not required for this property. However, the enzyme was no longer sensitive to the natural inhibitor protein which is one of its subunits (subunit epislon), but was still sensitive to inhibition by the flavonoid quercetin. 4. Two equivalents of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole were sufficient to inhibit about 80% of the ATPase activity of the coupling factor, irrespective of whether it contained two of five subunits. The inhibition was completely reversed by dithiothreitol. 5. Triated 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole was prepared. Treatment of the coupling factor with this tritium-labeled inhibitor followed by electrophoresis on acrylamide gels revealed that most of the radioactivity was incorporated into the beta subunit of the enzyme (molecular weight 56,000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号