首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The dose-response relationships of insulin stimulation of lipogenesis and inhibition of lipolysis were studied simultaneously by using rat adipocytes to determine whether these different effects of insulin are mediated through the same or different sets of receptors. 2. The sensitivity (defined as the concentration of insulin required to produce a half-maximal effect) of the stimulated lipogenic response to insulin was not significantly different from the sensitivity of the anti-lipolytic response to insulin. The addition of different adrenaline and glucose concentrations did not alter the half-maximal concentration of insulin required to inhibit lipolysis. 3. The specificities of the lipogenic and antilipolytic responses were studied by using insulin analogues. The sensitivities of the lipogenic and anti-lipolytic responses were the same for five chemically modified insulins and hagfish insulin, which have potencies compared with bovine insulin of between 3 and 90%. 4. Starving rats for 48h significantly increased the sensitivities of both the antilipolytic and lipogenic responses to insulin, but the changes in the sensitivities of both lipogenesis and anti-lipolysis returned to that of fed rats. 5. We conclude that insulin stimulates lipogenesis and inhibits lipolysis over the same concentration range. These observations provide powerful evidence that the different effects of insulin are mediated through the same set of receptors.  相似文献   

2.
Both vanadate and hydrogen peroxide (H2O2) are known to have insulin-mimetic effects. We previously reported that the mixture of vanadate plus H2O2 results in the generation of a peroxide(s) of vanadate, which strongly enhances IGF-II binding to rat adipocytes (Kadota et al., 1987b). We now report that pervanadate mimics insulin in isolated rat adipocytes to (1) stimulate lipogenesis, (2) inhibit epinephrine-stimulated lipolysis, and (3) stimulate protein synthesis. The efficacy of pervanadate is comparable to that of insulin. However, it is 10(2)-10(3) times more potent than vanadate alone. Exposure of intact rat adipocytes to pervanadate was found to activate the WGA-purified insulin receptor tyrosine kinase assayed with the exogenous substrate poly(Glu80/Tyr20) in a dose-dependent manner to a maximum of 1464% of control at 10(-3) M compared with a maximum insulin effect of 1046% at 10(-6) M. In contrast, in vitro assayed autophosphorylation of the WGA-purified extract was increased 3-fold after exposure of intact cells to insulin but not significantly increased after pervanadate. Furthermore, high concentrations of pervanadate (10(-5) M) inhibited subsequent in vitro added insulin-stimulated autophosphorylation. In vitro addition of pervanadate to WGA-purified receptors could not stimulate autophosphorylation or exogenous tyrosine kinase activity and did not inhibit insulin-stimulated autophosphorylation. Labeling of intact adipocytes with [32P]orthophosphate followed by exposure to 10(-4) M pervanadate increased insulin receptor beta-subunit phosphorylation (7.9 +/- 3.0)-fold, while 10(-7) M insulin and 10(-4) vanadate increased labeling (5.3 +/- 1.8)- and (1.1 +/- 0.2)-fold, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The glutamic acid:tyrosine (Glu:Tyr) synthetic polymer was observed to inhibit the insulin receptor beta subunit autophosphorylation with an IC50 of 0.20 mg/ml in the absence and 0.15 mg/ml in the presence of insulin. Even though complete blockade of beta subunit autophosphorylation was observed at 4.0 mg/ml Glu:Tyr, insulin was still capable of stimulating the exogenous protein kinase activity of the insulin receptor toward Glu:Tyr. Histone H2B (1.3 mg/ml) was also observed to inhibit the beta subunit autophosphorylation by approximately 80% with an IC50 of 0.31 and 0.35 mg/ml in the absence and presence of insulin, respectively. Similar to the results with Glu:Tyr, insulin was found to stimulate histone H2B phosphorylation under these conditions. Comparisons between the time courses of beta subunit autophosphorylation with those of Glu:Tyr phosphorylation both in the presence and absence of insulin confirmed that insulin can stimulate the exogenous protein kinase activity of the insulin receptor in the complete absence of beta subunit autophosphorylation. Prephosphorylation of the insulin receptor (from 0 to 1.3 mol of phosphate/mol of insulin receptor) in the absence of insulin was found to have no significant effect on the exogenous protein kinase activity when assayed both in the presence and absence of insulin. Insulin was observed to stimulate the phosphorylation of Glu:Tyr approximately 3-fold independent of the extent of beta subunit autophosphorylation. In contrast, prephosphorylation of the insulin receptors in the presence of insulin was observed to enhance the exogenous protein kinase activity dependent on the extent of autophosphorylation, such that by 1.4 mol of phosphate incorporated per mol of insulin receptor, insulin was found to maximally stimulate the initial rate of Glu:Tyr phosphorylation (approximately 9-fold). These results demonstrate that the insulin-dependent autophosphorylation of the insulin receptor results in an amplification of the insulin stimulation of the exogenous protein kinase activity, whereas the insulin-independent autophosphorylation does not.  相似文献   

4.
Genistein, an isoflavone putative tyrosine kinase inhibitor, was used to investigate the coupling of insulin receptor tyrosine kinase activation to four metabolic effects of insulin in the isolated rat adipocyte. Genistein inhibited insulin-stimulated glucose oxidation in a concentration-dependent manner with an ID50 of 25 micrograms/ml and complete inhibition at 100 micrograms/ml. Genistein also prevented insulin's (10(-9) M) inhibition of isoproterenol-stimulated lipolysis with an ID50 of 15 micrograms/ml and a complete effect at 50 micrograms/ml. The effect of genistein (25 micrograms/ml) was not reversed by supraphysiological (10(-7) M) insulin levels. In contrast, genistein up to 100 micrograms/ml had no effect on insulin's (10(-9) M) stimulation of either pyruvate dehydrogenase or glycogen synthase activity. We determined whether genistein influenced insulin receptor beta-subunit autophosphorylation or tyrosine kinase substrate phosphorylation either in vivo or in vitro by anti-phosphotyrosine immunoblotting. Genistein at 100 micrograms/ml did not inhibit insulin's (10(-7) M) stimulation of insulin receptor tyrosine autophosphorylation or tyrosine phosphorylation of the cellular substrates pp185 and pp60. Also, genistein did not prevent insulin-stimulated autophosphorylation of partially purified human insulin receptors from NIH 3T3/HIR 3.5 cells or the phosphorylation of histones by the activated receptor tyrosine kinase. In control experiments using either NIH 3T3 fibroblasts or partially purified membranes from these cells, genistein did inhibit platelet-derived growth factor's stimulation of its receptor autophosphorylation. These findings indicate the following: (a) Genistein can inhibit certain responses to insulin without blocking insulin's stimulation of its receptor tyrosine autophosphorylation or of the receptor kinase substrate tyrosine phosphorylation. (b) In adipocytes genistein must block the stimulation of glucose oxidation and the antilipolytic effects of insulin at site(s) downstream from the insulin receptor tyrosine kinase. (c) The inhibitory effects of genistein on hormonal signal transduction cannot necessarily be attributed to inhibition of tyrosine kinase activity, unless specifically demonstrated.  相似文献   

5.
A Shisheva  Y Shechter 《Biochemistry》1992,31(34):8059-8063
We report here that quercetin, a naturally occurring bioflavonoid, is an effective blocker of insulin receptor tyrosine kinase-catalyzed phosphorylation of exogenous substrate. The ID50 was estimated to be 2 +/- 0.2 microM in cell-free experiments, using a partially purified insulin receptor and a random copolymer of glutamic acid and tyrosine as a substrate. Insulin-stimulated autophosphorylation of the receptor itself was not blocked by quercetin (up to 500 microM). In intact rat adipocytes, quercetin inhibited insulin-stimulating effects on glucose transport, oxidation, and its incorporation into lipids. Inhibition of lipogenesis (50%) occurred at 47 +/- 4 microM, whereas full inhibition was evident at 110 +/- 10 microM quercetin. In contrast, the effect of insulin in inhibiting lipolysis remained unaltered in quercetin-treated adipocytes. The inhibitor was devoid of general adverse cell affects. Basal activities and the ability of lipolytic agents to stimulate lipolysis were not affected. Inhibition by quercetin enabled us to evaluate which insulinomimetic agents are dependent on tyrosine phosphorylation of endogenous substrates for stimulating glucose metabolism. Quercetin blocked lipogenesis mediated by insulin, wheat germ agglutinin, and concanavalin A. The lipogenic effect of Zn2+ and Mn2+ was partially blocked, whereas that of vanadate was not affected at all.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The receptors for insulin and epidermal growth factor undergo tyrosine autophosphorylation in response to ligand stimulation, while pp60v-src is an unregulated tyrosine kinase. In this report we show that each of the kinases phosphorylates an exogenous peptide that corresponds to the insulin proreceptor sequence 1142-1153. When the kinases were pre-phosphorylated, saturable Michaelis-Menten kinetics were observed. However, when the kinases had not been pre-phosphorylated biphasic kinetics were observed; at progressively higher substrate concentrations (greater than Km) less substrate phosphorylation was seen. Furthermore, when the kinases had not been pre-phosphorylated kinase autophosphorylation was inhibited at high substrate concentrations. On this basis we postulated that the substrate inhibition of substrate phosphorylation resulted directly from substrate inhibition of kinase autophosphorylation. To test this we designed additional peptides to function specifically as inhibitors of the kinases. Each of the 3 tyrosine residues within the substrate sequence were replaced either by 4-methoxyphenylalanine or phenylalanine, residues structurally similar to tyrosine but unable to accept phosphoryl transfer. Both analogs inhibited insulin and epidermal growth factor receptor autophosphorylation, whereas only the Phe-substituted analog inhibited pp60v-src phosphorylation. These data suggest that autophosphorylation of tyrosine residues near the kinase active site is a generalized mechanism for tyrosine kinase activation and that activation can be selectively blocked by substrates and nonphosphorylatable analogs.  相似文献   

7.
Effect of 1,2-diacylglycerols on the insulin receptor function and insulin action in rat adipocytes was studied. 1,2-dioctanoylglycerol (100 micrograms/ml) did not alter insulin binding but it did stimulate phosphorylation of the beta-subunit of the insulin receptor as well as its tyrosine kinase activity. However, dioctanoylglycerol inhibited insulin-stimulated receptor autophosphorylation. This concentration of dioctanoylglycerol inhibited insulin-stimulated CO2 metabolism, lipogenesis and 3-O-methyl-glucose transport in a dose-dependent manner but did not alter any of these bioeffects in absence of insulin. While there was no direct link between diacylglycerol effect on tyrosine kinase activity of the insulin receptor and insulin action in rat adipocytes, the parallel inhibition of insulin-stimulated receptor autophosphorylation and insulin bioeffects by dioctanoylglycerol suggests its direct or indirect role in insulin signalling in rat fat cells.  相似文献   

8.
Crosstalk between insulin and cAMP signalling pathways has a great impact on adipocyte metabolism. Whilst Protein kinase B (PKB) is a pivotal mediator of insulin action, in some cells regulation of PKB by cAMP has also been demonstrated. Here we provide evidence that, in a phosphatidyl inositol 3-kinase dependent manner, beta3-adrenergic stimulation (using CL316243) in adipocytes induces PKB phosphorylation in the absence of insulin and also potentiates insulin-induced phosphorylation of PKB. Interestingly, insulin- and CL316243-induced PKB phosphorylation was found to be inhibited by pools of cAMP controlled by PDE3B and PDE4 (mainly in the context of insulin), whereas a cAMP pool controlling protein kinase A appeared to mediate stimulation of PKB phosphorylation (mainly in the context of CL316243). Furthermore, an Epac (exchange protein directly activated by cAMP) agonist (8-pCPT-2'-O-Me-cAMP) mimicked the effect of the PDE inhibitors, giving evidence that Epac has an inhibitory effect on PKB phosphorylation in adipocytes. Further, we put the results obtained at the level of PKB in the context of possible downstream signalling components in the regulation of adipocyte metabolism. Thus, we found that overexpression of PKB induced lipogenesis in a PDE3B-dependent manner. Furthermore, overexpression or inhibition of PDE3B was associated with reduced or increased phosphorylation of the key lipogenic enzyme acetyl-CoA carboxylase (ACC), respectively. These PDE3B-dependent effects on ACC correlated with changes in lipogenesis. The Epac agonist, 8-pCPT-2'-O-Me-cAMP, mimicked the effect of PDE3B inhibition on ACC phosphorylation and lipogenesis.  相似文献   

9.
Reduced and carboxamidomethylated-lysozyme (RCAM-lysozyme) is an excellent substrate (Km = 13 microM) and a potent inhibitor of receptor autophosphorylation (Ki = 0.6 microM). By using these properties of RCAM-lysozyme autophosphorylation was resolved into two kinetically and functionally distinct components involving formation of phosphotyrosine on the receptor's beta-subunits: 1. Insulin-stimulated autophosphorylation is independent of autophosphorylation at other sites; activation of insulin receptor-catalyzed substrate phosphorylation is dependent upon this component of autophosphorylation, which is inhibited by RCAM-lysozyme. 2. Autophosphorylation at saturating RCAM-lysozyme concentration is insensitive to insulin and has little effect on substrate phosphorylation. Thus, only insulin-dependent receptor autophosphorylation is responsible for activation of kinase-catalyzed substrate phosphorylation.  相似文献   

10.
The inhibitory effect of gallic acid (3,4,5-trihydroxybenzoic acid), and its ester derivatives methyl, propyl, octyl and lauryl has been tested on the tyrosine kinase activity of affinity purified c-Src from human platelets, using the artificial substrate Poly (Glu.Na, Tyr) 4:1. When tested as inhibitor of the autophosphorylation of the enzyme and the phosphorylation of the protein tyrosine phosphatase SHP-1 by c-Src, lauryl gallate was found to be a more potent inhibitor than other widely used protein tyrosine kinase (PTK) inhibitors such as genistein and herbimycin A. However, lauryl gallate did not inhibit the activity of the serine threonine kinases protein kinase A (PKA) and casein kinase II (CKII) from rat brain.  相似文献   

11.
The inhibitory effect of gallic acid (3,4,5-trihydroxybenzoic acid), and its ester derivatives methyl, propyl, octyl and lauryl has been tested on the tyrosine kinase activity of affinity purified c-Src from human platelets, using the artificial substrate Poly (Glu,Na,Tyr) 4:1. When tested as inhibitor of the autophosphorylation of the enzyme and the phosphorylation of the protein tyrosine phosphatase SHP-1 by c-Src, lauryl gallate was found to be a more potent inhibitor than other widely used protein tyrosine kinase (PTK) inhibitors such as genistein and herbimycin A. However, lauryl gallate did not inhibit the activity of the serine threonine kinases protein kinase A (PKA) and casein kinase II (CKII) from rat brain.  相似文献   

12.
Dimethylaminopurine (DMAP) has previously been used as an inhibitor of phosphorylation in studies of meiotic events, and more recently to investigate TNFalpha signaling, because of its potential to inhibit activation of c-jun N-terminal kinase (JNK). Here we have addressed the effects of DMAP on metabolic insulin responses in adipocytes and on intracellular insulin signaling molecules. At 100 micromol/L, DMAP completely inhibited the ability of insulin to counteract lipolysis in isolated adipocytes. Insulin-induced lipogenesis and glucose uptake was inhibited to a lesser degree in a concentration-dependent manner starting at 10 micromol/L DMAP. Insulin-induced tyrosine phosphorylation of the insulin receptor was not affected by DMAP. Insulin-induced activation of protein kinase B, a known mediator of insulin action, was not inhibited by 100 micromol/L, but to a low extent by 1 mmol/L DMAP in intact cells. This inhibition was not sufficient to affect activation of the downstream protein kinase B substrate phosphodiesterase 3B. The inhibition of activation of JNK as a possible mechanism whereby DMAP affects insulin-induced antilipolysis, lipogenesis, and glucose uptake, was investigated using the JNK inhibitor SP600125. At 100 micromol/L, SP600125 completely reversed the antilipolytic effect of insulin, as well as partially inhibited insulin-induced lipogenesis and glucose-uptake, indicating that JNK may be involved in mediating these actions of insulin. Inhibition of JNK by DMAP may therefore partly explain the negative impact of DMAP on insulin action in adipocytes.  相似文献   

13.
Insulin resistance contributes to a number of metabolic disorders, including type II diabetes, hypertension, and atherosclerosis. Cytokines, such as tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6, and hormones, such as growth hormone, are known to cause insulin resistance, but the mechanisms by which they inhibit the cellular response to insulin have not been elucidated. One mechanism by which these agents could cause insulin resistance is by inducing the expression of cellular proteins that inhibit insulin receptor (IR) signaling. Suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine signaling pathways, the expression of which is regulated by certain cytokines. SOCS proteins are therefore attractive candidates as mediators of cytokine-induced insulin resistance. We have found that SOCS-1 and SOCS-6 interact with the IR when expressed in human hepatoma cells (HepG2) or in rat hepatoma cells overexpressing the human IR. In SOCS-1-expressing cells, insulin treatment increases the extent of interaction with the IR, whereas in SOCS-6-expressing cells the association with the IR appears to require insulin treatment. SOCS-1 and SOCS-6 do not inhibit insulin-dependent IR autophosphorylation, but both proteins inhibit insulin-dependent activation of ERK1/2 and protein kinase B in vivo and IR-directed phosphorylation of IRS-1 in vitro. These results suggest that SOCS proteins may be inhibitors of IR signaling and could mediate cytokine-induced insulin resistance and contribute to the pathogenesis of type II diabetes.  相似文献   

14.
Previous studies have shown that reduced carbamoylmethylated lysozyme (RCAM-lysozyme, MW approximately 14.5K) is a substrate and inhibitor (Ki approximately 0.6 microM) of insulin receptor kinase (InsRK) autophosphorylation (Kohanski & Lane, 1986; Lane & Kohanski, 1986). In this study we have prepared a family of defined modified derivatives of RCAM-lysozyme and used them to probe the nature of the substrate and inhibitory sites of InsRK. All open-chain derivatives of lysozyme in which either the tryptophanyl, methionyl, cysteinyl, arginyl, or histidyl side chains were modified served as substrates and were potent inhibitors of InsRK autophosphorylation. This was true whether the substitutions were either hydrophilic or hydrophobic, although the hydrophilic derivatives had a higher inhibitory potency. Tryptic peptides derived from RCAM-lysozyme, however, were inactive as inhibitors, and a mixture of the three cyanogen bromide fragments (containing 12, 24, and 93 amino acids, respectively) was found to be less potent in inhibiting the receptor kinase. Derivatization of either tyrosyl or carboxyl side chains produced derivatives that were neither substrates nor capable of inhibiting receptor autophosphorylation. Derivatives with modified amino groups were substrates for InsRK but were not able to inhibit InsRK autophosphorylation. The present study suggests that (a) unphosphorylated InsRK has a large hydrophilic substrate binding domain and is effectively inhibited by long-chain polypeptides but not by short sequences, (b) some of the amino, carboxyl, and hydroxyphenyl side chains are essential to the inhibitory nature of these polypeptides, and (c) derivatives that fail to inhibit autophosphorylation can still be recognized and phosphorylated by active InsRK.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Dithiothreitol (DTT) was observed to increase both beta-subunit autophosphorylation and exogenous substrate phosphorylation of the insulin receptor in the absence of insulin. The natural protein reducing agent thioredoxin was also observed to increase the insulin receptor beta-subunit autophosphorylation. The activation of the insulin receptor/kinase by both DTT and thioredoxin was found to be additive with that of insulin. Further, the increase in the insulin receptor beta-subunit autophosphorylation in the presence of DTT and insulin was demonstrated to be due to an increase in the initial rate of autophosphorylation without alteration in the extent of phosphorylation. Similarly, the increase in the exogenous substrate phosphorylation was due to an increase in the Vmax of phosphorylation without significant effect on the apparent Km of substrate binding. In the presence of relatively low concentrations of DTT, insulin was found to potentiate the apparent insulin receptor subunit reduction of the native alpha 2 beta 2 heterotetrameric complex into alpha beta heterodimers, when observed by silver staining of sodium dodecyl sulfate-polyacrylamide gels. N-[3H]Ethylmaleimide ([3H]NEM) labeling in the absence of DTT pretreatment demonstrated that only the beta subunit had accessible sulfhydryl group(s). However, treatment of insulin receptors with DTT increased the amount of [3H]NEM labeling in the beta subunit as well as exposing sites on the alpha subunit. Further, incubation of the insulin receptors with the combination of DTT and insulin also demonstrated the apparent insulin-potentiated subunit reduction without any increase in the total amount of [3H]NEM labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have previously reported that insulin and osmotic shock stimulate an increase in glucose transport activity and translocation of the insulin-responsive glucose transporter isoform GLUT4 to the plasma membrane through distinct pathways in 3T3L1 adipocytes (D. Chen, J. S. Elmendorf, A. L. Olson, X. Li, H. S. Earp, and J. E. Pessin, J. Biol. Chem. 272:27401-27410, 1997). In investigations of the relationships between these two signaling pathways, we have now observed that these two stimuli are not additive, and, in fact, osmotic shock pretreatment was found to completely prevent any further insulin stimulation of glucose transport activity and GLUT4 protein translocation. In addition, osmotic shock inhibited the insulin stimulation of lipogenesis and glycogen synthesis. This inhibition of insulin-stimulated downstream signaling occurred without any significant effect on insulin receptor autophosphorylation or tyrosine phosphorylation of insulin receptor substrate 1 (IRS1). Furthermore, there was no effect on either the insulin-stimulated association of the p85 type I phosphatidylinositol (PI) 3-kinase regulatory subunit with IRS1 or phosphotyrosine antibody-immunoprecipitated PI 3-kinase activity. In contrast, osmotic shock pretreatment markedly inhibited the insulin stimulation of protein kinase B (PKB) and p70S6 kinase activities. In addition, the dephosphorylation of PKB was prevented by pretreatment with the phosphatase inhibitors okadaic acid and calyculin A. These data support a model in which osmotic shock-induced insulin resistance of downstream biological responses results from an inhibition of insulin-stimulated PKB activation.  相似文献   

17.
Abstract: Although serine/threonine phosphorylation has been more commonly recognized as a mechanism to modulate the function of ion channels and receptors, tyrosine phosphorylation is under increasing scrutiny. An important subtype of glutamate receptor, the NMDA receptor, is shown to be regulated by insulin via protein tyrosine kinase (PTK). NMDA currents through cloned receptors are potentiated by insulin in a subunit-specific manner. The insulin-mediated potentiation of NMDA current is diminished by inhibitors of PTKs. At least one exogenous cytosolic PTK, pp60c- src , is also able to potentiate NMDA current. Because later application of PTK inhibitors can reverse the seemingly stable insulin-mediated potentiation of NMDA current, it appears that tyrosine residues responsible for potentiation are continually rephosphorylated by some long-term PTK activity that was induced via insulin treatment.  相似文献   

18.
Signaling by insulin requires autophosphorylation of the insulin receptor kinase (IRK) at Tyr1158, Tyr1162, and Tyr1163. Earlier experiments with (32)P-gamma-ATP indicated that the nonphosphorylated IRK (IRK-0P) is relatively inactive, and crystallographic data indicated that the ATP binding site of IRK-0P is blocked by its activation loop. We now show that phosphocreatine (PCr) in combination with hydrogen peroxide serves as an alternative phosphate donor and that ATP and PCr use distinct binding sites. Whereas phosphorylation of the IRK by ATP is inhibited by the nonhydrolyzable competitor adenylyl-imidodiphosphate, phosphorylation by PCr is enhanced. The IRK mutant Tyr1158Phe showed no phosphorylation with PCr but almost normal phosphorylation with ATP, whereas Tyr1162Phe was phosphorylated well with PCr but less then normal with ATP. 3-Dimensional models of IRK-0P revealed that the conversion of any of the four cysteine residues 1056, 1138, 1234, and 1245 into sulfenic acid produces structural changes that bring Tyr1158 into close contact with Asp1083 and render the well-known catalytic site at Asp1132 and Tyr1162 accessible from a direction that differs from the known ATP binding site. The mutant Cys1138Ala, in contrast, showed relatively inaccessible catalytic sites and weak catalytic activity in functional experiments. Taken together, these findings indicate that 'redox priming' of the IRK facilitates its autophosphorylation by PCr in the activation loop.  相似文献   

19.
Insulin signaling requires autophosphorylation of the insulin receptor kinase (IRK) domain. Using purified recombinant IRK fragments and the isolated intact insulin receptor, we show here that autophosphorylation is inhibited by ADP and that this effect is essentially reversed by hydrogen peroxide. Autophosphorylation was inhibited by hydrogen peroxide (60 microM) in the absence of ADP but enhanced in the presence of inhibitory concentrations of ADP (67 microM). Enhancement by hydrogen peroxide required direct interaction of hydrogen peroxide with the kinase domain and was not seen in insulin receptor mutants C1245A and C1308A. A similar enhancement was obtained in intact cells in the absence of insulin upon treatment with 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea, indicating that IRK activity can be alternatively enhanced by a shift in the thiol/disulfide redox status. Molecular modeling of the IRK domain indicated that the ATP-binding site becomes distorted after releasing the nucleotide unless the IRK domain is oxidatively derivatized at Cys1245. Recent clinical studies suggest that these effects may play a role in obesity due to the fact that cytoplasmic creatine kinase in combination with phosphocreatine normally ensures rapid removal of ADP in muscle cells but not in fat cells.  相似文献   

20.
The tyrosine kinase activity of a chimeric insulin receptor composed of the extracellular domain of the human insulin receptor (IR) and the intracellular domain of the chicken IR was compared with wild-type human IR. The degrees of autophosphorylation, phosphorylation of IRS-1, and in vitro phosphorylation of an exogenous substrate after stimulation by human insulin were similar to that seen with the human IR. We conclude that the insulin resistance of chickens is not attributable to a lower level of intrinsic tyrosine kinase activity of IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号