首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological development and plasticity of embryonic and postnatal rat adrenal medullary cells were studied in homologous adrenal grafts to the anterior chamber of the eye. The eyes of recipient rats were adrenergically denervated 10 days prior to grafting by extirpation of the superior cervical ganglion in order to increase levels of NGF and NGF-like activities in the iris. Grafts taken at the 15th day of embryonic development (E15), i.e., at the beginning of immigration of medullary progenitor cells into the adrenal cortical anlagen, contained no cortical or mature medullary cells after 2 weeks in oculo. Numerous sympathoblastic cells, however, were located at the anterior surface of the iris. E 16 and E 17 transplants showed abundant mature cortical tissue after 2 weeks. Small groups of medullary cells with the ultrastructural characteristics of mature pheochromoblasts or young chromaffin cells were interspersed among cortical cells without forming a discrete medulla. Neuronal cells were exclusively found outside the cortical cell mass. Sympathoblasts grew at the surface of the iris, while young sympathetic nerve cells, which were invested by Schwann cells and received synaptic axon terminals, were embedded into the stroma of the iris. Grafting of E 21 adrenals yielded very similar results except that, in a few instances, young chromaffin cells were located outside the cortex and sympathetic nerve cells were seen to be in close contact with cortical cells. In transplants of adult medullary cells typical mature adrenaline and noradrenaline cells were clearly distinguishable after 8 weeks even in the absence of cortical cells. The only indication of phenotypical changes in these cells was the formation by some of them, of neuritic processes which could be visualized in glyoxylic acid-treated whole mounts of irises. These results are compatible with the idea that embryonic adrenal medullary cells have the environmentally controlled potential to develop along the neuronal or endocrine line, but could also be interpreted in terms of a selection of a specific subpopulation with predetermined potentialities by a specific microenvironment. Moreover, these results suggest that increasing differentiation of medullary cells is accompanied by progressive restrictions in their genetic program, which eventually prevent full transdifferentiation of mature chromaffin into neuronal cells.  相似文献   

2.
Summary Enkephalin (ENK)- and neurotensin (NT)-immunoreactivities (IR) were localized in cat adrenal medulla using immunocytochemistry. ENK was localized mainly in adrenaline cells, 70%–80% of which were heavily labelled. About 5%–10% of the noradrenaline cells were ENK-immunoreactive (IR). A dense network of ENK-IR nerves was localized among adrenaline cells. NT was localized only in the noradrenaline cells, 60%–70% of which were immunoreactive. NT- and ENK-IR were localized in separate noradrenaline cells. A dense network of NT-IR nerves was restricted among noradrenaline cells.The present findings confirm that ENK- and NT-like peptides are localized in separate adrenal medullary cells and demonstrate that also the preganglionic nerves are divided in subpopulations according to their neuropeptide content. These nerves have a selective localization among adrenaline and noradrenaline cells and may have physiological significance in the control of secretion of catecholamines and neuropeptides from adrenal medulla.  相似文献   

3.
Enkephalin (ENK)- and neurotensin (NT)-immunoreactivities (IR) were localized in cat adrenal medulla using immunocytochemistry. ENK was localized mainly in adrenaline cells, 70%-80% of which were heavily labelled. About 5%-10% of the noradrenaline cells were ENK-immunoreactive (IR). A dense network of ENK-IR nerves was localized among adrenaline cells. NT was localized only in the noradrenaline cells, 60%-70% of which were immunoreactive. NT- and ENK-IR were localized in separate noradrenaline cells. A dense network of NT-IR nerves was restricted among noradrenaline cells. The present findings confirm that ENK- and NT-like peptides are localized in separate adrenal medullary cells and demonstrate that also the preganglionic nerves are divided in subpopulations according to their neuropeptide content. These nerves have a selective localization among adrenaline and noradrenaline cells and may have physiological significance in the control of secretion of catecholamines and neuropeptides from adrenal medulla.  相似文献   

4.
The development of neuron-like cholinergic immunophenotypes by adrenal chromaffin cells was studied in 10-week-old mouse adrenal medullary grafts. Fragments of chromaffin tissue were implanted into mouse hippocampus, and antibodies specific for neurofilaments (NF), neuron-specific enolase (NSE), choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and phenylethanolamine-N-methyltransferase (PNMT) were applied to the grafts. Adrenal medulla grafts survived well and most of the transplanted cells were either round or polygonal. A minority of chromaffin cells elaborated an intermediate or sympathetic neuron phenotype. Chromaffin cells showed pronounced immunoreactivity for NSE in their perikarya and axon-like processes: immunoreactivity for NF was only found in a few processes. In adjacent immunohistochemically stained sections, the transplanted cells stained for ChAT and AChE. At the electron-microscope level, the immunohistochemical reactions for the two acetylcholine-related enzymes were mainly located on the endoplasmic reticulum and in cell processes. Immunoreactivity for PNMT was found to decline in transplanted chromaffin cells below that of normal adrenal medulla. These observations suggest that, in adrenal medullary grafts implanted into the hippocampus, chromaffin cells are endowed with neuron-like cholinergic immunophenotypes.  相似文献   

5.
Abstract: In this work we have studied the mechanism for the increase of adrenal ODC (ornithine decarboxylase, EC 4.1.1.17) activity provoked by oxotremorine, a muscarinic agonist. 1. Oxotremorine increased medullary ODC activity maximally at 2 h. Cortical enzyme responded much more slowly. 2. Blockade of peripheral muscarinic receptors with methylatropine partially reduced the response to oxotremorine in the medulla, but not cortex. 3. Hy-pophysectomy abolished the cortical, but not the medullary, responses to oxotremorine. Methylatropine reduced the effect of oxotremorine on medullary ODC in hypophysectomized rats. 4. In unilaterally splanchnicotomized rats oxotremorine caused an increase of ODC activity of the denervated adrenal gland relative to control value; activities in both medulla and cortex were significantly lower than those observed in the innervated gland. Evidence was obtained for a compensatory increase of ODC activity of the adrenal cortex (but not medulla) on the intact side of unilaterally operated rats. 5. Surgical intervention, in the form of a sham operation for transection of the spinal cord, leads to an increase of ODC activity in both parts of the adrenal gland. Transection of the cord attenuates these increases. 6. The additional increase of medullary ODC activity owing to the administration of oxotremorine to sham-operated rats is partially reduced in the adrenal medulla by muscarinic blockade, and completely in the cortex. This effect of methylatropine in regard to cortical ODC activity was not apparent in the other experiments with intact or unilaterally splanchnicotomized (unoperated side) rats. The results with unilaterally splanchnicotomized rats and those with transected spinal cord suggest that oxotremorine-induced modifications of adrenal ODC activity are centrally mediated, above the level of origin of the splanchnic nerves in the spinal cord (T8–10). Experiments with hypophysectomized rats show that the response of the adrenal cortex to oxotremorine is entirely mediated by the hypophysis.  相似文献   

6.
Summary This study evaluates the production of adrenergic nerve fibers by adrenal medullary tissue of the adult rat grafted to the anterior chamber of the eye of adult recipients. The chromaffin grafts attach to and become vascularized by the host iris. They decrease in size intraocularly during the first 3 weeks. This decrease is somewhat counteracted by sympathetic denervation of the host iris, and better counteracted by sympathetic denervation and addition of nerve growth factor (NGF, given at grafting and 1 and 2 weeks after grafting). Outgrowth of adrenergic nerve fibers from the grafts into the host iris was studied in wholemount preparations by use of the Falck-Hillarp technique 3 weeks after grafting. The innervated area of the host iris was approximately doubled in the chronically sympathectomized group and doubled again in the chronically sympathectomized NGF-supplemented group. Chronic sympathetic denervation had no effect on density of outgrowing nerves, whereas addition of NGF more than doubled nerve density. Since sympathetic denervation causes a slight elevation of NGF activity in the iris, the present experiments are taken as evidence that the level of NGF in the iris regulates formation of nerve fibers by adrenal medullary tissue grafts from adult rats.  相似文献   

7.
Summary The epithelial framework of the human thymus has been studied in parallel by immunohistochemical methods at the light- and electron-microscopic levels. Different monoclonal antibodies were used, reacting with components of the major histocompatibility complex, keratins, thymic hormones and other as yet antigenically undefined substances, which show specific immunoreactivities with human thymus epithelial cells.The electron-microscopic immunocytochemical observations clearly confirm microtopographical differences of epithelial cells not only between the thymic cortex and medulla, but also within the cortex itself. At least four subtypes of epithelial cells could be distinguished: 1) the cortical surface epithelium; 2) the main cortical epithelial cells and thymic nurse cells; 3) the medullary epithelial cells; and 4) the epithelial cells of Hassall's corpuscles.The various epithelial cell types of the thymus display several common features like tonofilaments, desmosomes and some surface antigens as demonstrated by anti-KiM3. In other respects, however, they differ from each other. The cortical subtype of thymic epithelial cells including the thymic nurse cells shows a distinct pattern of surface antigens reacting positively with antibodies against HLA-DR (anti-HLA-DR) and anti-21A62E. Electron-microscopic immunocytochemistry with these antibodies clearly reveals a surface labeling and a narrow contact to cortical thymocytes particularly in the peripheral cortical regions. An alternative staining pattern is realized by antibodies to some antigens associated with other subtypes of thymic epithelial cells. Medullary epithelial cells as well as the cortical surface epithelium react likewise positively with antibodies to special surface antigens (anti-Ep-1), to special epitopes of cytokeratin (anti-IV/82), and to thymic hormones (anti-FTS). The functional significance of distinct microenvironments within the thymus provided by different epithelial cells is discussed in view of the maturation of T-precursor cells.Glossary of Abbreviations Anti-X anti-X antibody - APUD-cells amine precursor uptake and decarboxylation (gastro-intestinal endocrine cells) - DAB diamino-benzidine - DMSO dimethyl sulfoxide - FTS facteur thymique sérique - HLA-A, B, C human leucocyte antigen, A, B, C-region related - HLA-DR human leucocyte antigen, D-region related - IDC interdigitating cell - MHC major histocompatibility gene complex - PBS phosphate-buffered saline - TNC thymic nurse cell This investigation was supported by grants from the Deutsche Forschungsgemeinschaft, and its Sonderforschungsbereich 111Fellow of the Alexander von Humbold-Stiftung, Institute of Pathology, University of Würzburg, Federal Republic of GermanyThe authors appreciate the contribution of human thymus tissue from Professor Alexander Bernhard, Abteilung kardiovasculäre Chirurgie der Universität Kiel; the gift of monoclonal antibodies from Dr. M.J.D. Anderson, Dr. M. Dardenne and Dr. H.J. Radzun; and the excellent technical assistence of Mrs. O.M. Bracker, Mrs. H. Hansen, Mrs. R. Köpke, Mrs. M. v. Kolszynski, Mrs. J. Quitzau, Mrs. H. Siebke, and Mrs. H. Waluk  相似文献   

8.
Summary Knowing the ontogenesis of the central monoamine neurons of the rat it is possible to obtain, by free-hand dissection from embryos and newly born animals, pieces containing dopamine (DA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT) neurons that are small enough to permit homologous transplantation to the anterior chamber of the eye of adult animals. With this technique it was established that all three types of immature monoamine neurons are able to survive in the anterior chamber. Fluorescence histochemical analysis of whole mount preparations of the sympathetically denervated host irides revealed that both the catecholamine- and the 5-HT-neurons are able to partly reinnervate the irides, forming networks of varicose nerve terminals similar to the normally present sympathetic adrenergic ground plexus.Monoamine nerve cell bodies are attached to the irides but the majority of fluorescent nerve cell bodies is located within the transplants. Serial sectioning of these transplants showed rather well organized brain tissue, containing groups of fluorescent and non-fluorescent cell bodies, many areas being innervated by monoamine nerve terminals. When brain tissue was transplanted before the normal appearance of fluorescent neuroblasts (embryos with a crown-rump length less than 8 mm) monoamine neurons developed and matured within the eye.The amount of newly formed nerves of central origin recovered on the irides increased with time between the 2nd and 4th postoperative week and persisted after 2 months. The yield of new fibers was better using transplants from embryos with a crown-rump length between 15 and 30 mm than using transplants from larger embryos and newly born animals.If embryonic brain tissue known to be devoid of monoamine nerve cell bodies but containing monoamine nerve terminals in the adult state (cortex cerebri and cerebelli, spinal cord) was transplanted to sympathetically non-denervated eyes, the sympathetic adrenergic fibers seemed to be able to innervate the transplants.This work was supported by grants from the Swedish Medical Research Council (14×–3185), Karolinska Institutets fonder, and Magnus Bergvalls Stiftelse. We thank Miss Monica Eliasson, Mrs. Ulla Flyger, Mrs. Barbro Norstedt and Miss Ingrid Strömberg for skilful technical assistance. The generous gifts of Nialamide, Pfizer, and Pargyline, Abbott are gratefully acknowledged.  相似文献   

9.
Summary VIP-like immunoreactivity was revealed in a few chromaffin cells, medullary ganglion cells and a plexus of varicose nerve fibers in the superficial cortex and single varicose fibers in the juxtamedullary cortex and the medulla of the rat adrenal gland. VIP-like immunoreactive chromaffin cells were polygonal in shape without any distinct cytoplasmic processes and they appeared solitarily. Their cytoplasm contained abundant granular vesicles having a round core and the immunoreactive material was localized to the granular core. VIP-immunoreactive ganglion cells were multipolar and had large intracytoplasmic vacuoles. The immunoreactive material was localized not only in a few granular vesicles but also diffusely throughout the axoplasm. VIP-immunoreactive varicose nerve fibers in the superficial cortex were characterized by abundant small clear vesicles and some large granular vesicles, while those in the juxtamedullary cortex and medulla and the ganglionic processes were characterized by abundant large clear vesicles, as well as the same vesicular elements as contained in the nerves in the superficial cortex. The immunoreactive material was localized on the granular cores and diffusely in the axoplasm in both nerves. Based on the similarity and difference in the composition of the vesicles contained in individual nerves, it is likely that the VIP-immunoreactive nerve fibers in the medulla and the juxtamedullary cortex are derived from the medullary VIP-ganglion cells, while those in the superficial cortex are of extrinsic origin. The immunoreactive nerve fibers in both the cortex and the medulla were often in direct contact with cortical cells and chromaffin cells, where no membrane specializations were formed. The immunoreactive nerve fibers were sometimes associated with the smooth muscle cells and pericytes of small blood vessels in the superficial cortex. In addition they were often seen in close apposition to the fenestrated endothelial cells in the cortex and the medulla, only a common basal lamina intervening. Several possible mechanisms by which VIP may exert its effect in the adrenal gland are discussed.  相似文献   

10.
The adrenal gland of the camel consists of an outer cortex and an inner medulla. The general disposition of the cortex and medulla, however, differs occasionally from that of other mammals. Extensions of medulla could reach as far as the periphery of the cortex. Islet of medullary tissue may be found in sections of the cortex and cortical tissue consisting of all zones of the cortex may occur around arteries or nerves in the medulla. The medulla may be separated from the cortex by connective tissue especially in old camels. The arrangement of noradrenaline-secreting cells is different from that in other ruminants; they are found in groups scattered between the adrenaline-secreting cells. Bundles of smooth muscle occur in venules at the corticomedullary interface. Accessory adrenal glands are found embedded in the renal fat. They are similar in structure to the adrenal gland. The adrenal cortex forms 74% of the volume of the gland and the ratio of the cortex to medulla is 4:1. The zona glomerulosa, fasciculata and reticularis constitute about 13%, 53%, and 29% by volume of the cortex, respectively.  相似文献   

11.
Neurocalcin is a novel calcium-binding protein found in bovine brain tissue. We investigated immunoreactivity for neurocalcin in the mouse adrenal medulla using light and electron microscopy. The immunoreactivity was present in nerve fibers, nerve terminals, and ganglion cells in the adrenal medulla, but chromaffin cells, sustentacular cells, and Schwann cells were negative in reaction. Nerve bundles containing neurocalcin-immunoreactive fibers passed through the adrenal cortex and extended into the medulla. Immunopositive nerve fibers branched off and projected varicose terminals around the chromaffin cells. These varicose terminals contained small and large-cored vesicles and made synapses with the chromaffin cells. We performed paraformaldehyde-induced fluorescence-histochemical studies for catecholamine combined with immunohistochemical studies for neurocalcin. Neurocalcin-immunoreactive nerve terminals were more abundant at noradrenaline (fluorescent) cell-rich regions than at adrenaline (non-fluorescent) cell-rich regions. These results show that neurocalcin-immunoreactive nerves mainly innervate noradrenaline-containing chromaffin cells in the mouse adrenal medulla and that neurocalcin may regulate synaptic function in the nerve terminals. Received: 21 October 1996 / Accepted: 12 February 1997  相似文献   

12.
Summary The distribution of monoamine oxidase types A and B within the adrenal galdn was studied in several mammals by histochemical methods. Controls showed that the methods were valid. The bovine adrenal medulla contained mostly the B type enzyme, distributed heterogeneously, with some A type associated with endothelium, nerves, and cells surrounding the nerves. The bovine adrenal cortex showed a marked zonation of the two types of monoamine oxidase. The zona glomerulosa contained the B type enzyme and the zona fasciculata and zona reticularis contained the type A enzyme. The adrenal medulla of the dog, cat, and rat demonstrated relatively little enzyme activity and it appeared to be both type A and B. The adrenal cortex of these animals appeared to contain mostly the B type enzyme, except the canine zona reticularis, which contained some A type monoamine oxidase as well.  相似文献   

13.
Among the mammalian tachykinins, substance P (SP) has been shown to be the most potent at modulating the response due to nicotinic acetylcholine receptor stimulation of bovine adrenal chromaffin cells. SP-like immunoreactivity has been detected in nerve terminals innervating the adrenal medulla; however, little is known of the presence of other tachykinins in this tissue. In this study, reverse-phase HPLC was used to fractionate peptides in bovine adrenal medullary extracts, and the fractions were analyzed by radioimmunoassay using antisera to SP or neurokinin A (NKA). The results show that both NKA- and SP-like immunoreactivities are present in the adrenal medulla. The presence of neurokinin B is also indicated. The presence of multiple tachykinins in this tissue raises questions as to their functions in the adrenal medulla.  相似文献   

14.
Zusammenfassung Im Nebennierenmark von adulten Wildmeerschweinchen (Cavia aperea tschudii) und Hausmeerschweinchen (Cavia aperea f. porcellus) werden bisher unbekannte intrazelluläre Fibrillenstrukturen nachgewiesen. Licht- und elektronenmikroskopische Befunde zeigen, daß in bestimmten Markzellen Filamentbündel in Gruppen auftreten, die durch das Perikaryon bis zur Zellperipherie zu verfolgen sind. Sie fasern in der Nähe des Plasmalemms auf und bilden desmosomenähnliche Kontaktflächen. Die Einzelfilamente sind ca. 70–100 Å dick. Beim Chinchilla konnten im Mark keine Filamentstränge festgestellt werden, beim Haus- und Wildmeerschweinchen kommen sie in unterschiedlicher Häufigkeit vor.
Intracellular fibrils in the adrenal medulla of domesticated and wild guinea pigs (Cavia aperea f. porcellus L. and Cavia aperea tschudii fitzinger)
Summary By light and electron microscopic observations intracellular fibrils were found in the adrenal medulla of adult wild (Cavia aperea tschudii) and domesticated guinea pigs (Cavia aperea f. porcellus). In certain cells of the adrenal medulla bundles of filaments can be traced from the perinuclear region into the periphery of the cells. Near the plasma membrane they split apart and attach to the desmosome-like regions. The individual filaments are about 70–100 Å in diameter. In adrenal medullary cells of chinchilla no fibrillar strands were observed, in wild and domesticated guinea pigs they occur in different numbers.


Die Untersuchung wurde mit dankenswerter Hilfe der Deutschen Forschungsgemeinschaft durchgeführt.  相似文献   

15.
The rat adrenal medulla architecture was examined using a combination of medullary blood vessel reconstructions and transmission electron microscopy. The peripheral radicles of the central vein and the medullary capillaries of the medullary arteries were thus precisely identified in the electron microscopic observations. The observations confirmed that the peripheral segments of the central vein were sinusoidal vessels with an attenuated and fenestrated endothelial wall. No ultrastructural differences were observed between segments lined by epinephrine-storing cells and those lined by norepinephrine-storing cells. The findings suggest that these peripheral segments of the adrenal central vein were sites of cortical hormonal effects on the adrenal medulla. The vessel structure does not support the hypothesis that medullary chromaffin-cell development is controlled by selective distribution of adrenal blood vessels.  相似文献   

16.
Summary Ontogenetic differentiation of the human thymus was investigated in 50 embryos by means of light and electron microscopic methods in an attempt to clarify the morphogenesis of the complicated microecology of thymic tissue. At the 8th gestational week (g.w.), the primordium of the thymus contains almost exclusively undifferentiated epithelial cells. At the 10th g.w., the epithelial cells in the central part are spindle-shaped. During the subsequent weeks the cortical region of the thymus becomes separated into lobes by mesenchymal septa containing hemopoietic precursor cells and large electronlucent cells with irregularly shaped nuclei. The latter cells are also found in the deeper presumptive medullary regions of the thymus; they differentiate into interdigitating reticulum cells (IDC). The permeation of the medulla of the thymus by non-epithelial IDC occurs concurrently with the formation of cortical and medullary epithelial cells. Between the 12th and 14th g.w. the cortical and medullary differentiation is completed. At this time-stage cortical small lymphocytes differ in morphological shape from medullary lymphocytes, the latter acquiring the appearance of immunocompetent T cells and establishing intimate contact with the IDC.These findings indicate that the thymic cortex and medulla contain different epithelial cells. In addition, the thymic medulla displays cells characterized by the morphology of typical interdigitating reticulum cells of peripheral lymphoid tissue. The structural pattern of the thymus is correlated to morphologically differing lymphoid cell populations in the cortical and medullary regions.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft and by the Sonderforschungsbereich 111The authors dedicate this paper to Professor Helmut Leonhardt on the occasion of his 60th birthday. The authors also appreciate the excellent technical assistance of Mrs. I. Knauer, Mrs. H. Waluk and Mrs. H. Siebke  相似文献   

17.
The distribution and secretion of atrial natriuretic peptides (ANPs) were investigated in bovine adrenal medulla. (1) Cultured bovine adrenal medullary cells (2 x 10(6)/dish) contained 100.4 +/- 6.0 fmol of immunoreactive ANP (IR-ANP) and 207.3 +/- 6.6 nmol of catecholamines as epinephrine plus norepinephrine. (2) Stimulation of nicotinic but not muscarinic acetylcholine receptors caused a cosecretion of IR-ANP and catecholamines corresponding to the ratio of IR-ANP to catecholamines in cultured bovine adrenal medullary cells. (3) Carbachol-stimulated secretion of IR-ANP was dependent on the presence of extracellular Ca2+. (4) Chromaffin granules isolated from bovine adrenal medulla contained large amounts of IR-ANP and catecholamines, in the same ratio as did cultured adrenal medullary cells. (5) Reverse-phase HPLC analysis showed that both stored and secreted IR-ANP consisted of two components, which eluted at the position of ANP(99-126) or ANP(1-126). These results indicate that ANPs are stored as ANP(99-126) and ANP(1-126) in chromaffin granules, and are cosecreted in parallel with catecholamines in a Ca2+-dependent manner by the stimulation of nicotinic acetylcholine receptors.  相似文献   

18.
Antibodies specific for chromogranin A, B or C have been used to detect immunohistochemically these three anionic proteins. Pancreatic A, B and PP cells, gut argentaffin EC, argyrophil ECL and gastrin G cells, thyroid C cells, parathyroid cells, adrenal medullary cells, pituitary TSH, FSH and LH cells as well as some axons of visceral nerves have been found to react with chromogranin A antibodies. Pancreatic A, gut EC and G, adrenal medullary and pituitary cells as well as some gut nerve fibers showed chromogranin B immunoreactivity. Chromogranin C immunoreactivity has been detected in pancreatic A, pyloric D1, intestinal L, thyroid C, adrenal medullary and pituitary cells, as well as in some gut neurons and nerve fibers. No crossreactivity has been found in immunohistochemical tests between chromogranins A, B or C and costored monoamines or peptide hormones/prohormones, from which chromogranins can be separated by selective extraction during fixation. On both morphological and chemical grounds a relationship seems to exist between chromogranin A and Grimelius' argyrophilia. Sialooligosaccharide chains of chromogranin A and, possibly, chromogranins' phosphoserine/phosphothreonine groups, seem to interact with guanidyl, amino, and/or imidazole groups of non-chromogranin components to form silver complexing sites accounting for granules' argyrophilia, which can be removed or blocked without affecting chromogranin immunoreactivities. The abundant anionic groups of the three proteins should contribute substantially to granules' basophilia, the partly "masked" pattern of which supports the existence of a close interaction of such groups with other components of secretory granules, including monoamines and peptide hormones or prohormones. Chromogranins could play a r?le in hormone postranslational biosynthesis and intragranular packaging.  相似文献   

19.
Adrenomedullin, originally identified in the adrenal medulla, has binding sites in the adrenal gland; however, its role in the adrenal medulla is unclear. This study was designed to characterise adrenomedullin binding sites in the rat adrenal medulla, using ligand binding studies, immunocytochemistry, and mRNA analysis. A single population of specific adrenomedullin receptors was identified in adrenal medullary homogenates. 125I-Adrenomedullin was displaced only by adrenomedullin1-50 and not by calcitonin gene-related peptide or amylin at concentrations up to 100 nmol/L. The receptor K(D) was 3.64 nmol/L with a receptor density of 570 fmol/mg of protein. Analysis of mRNA revealed that the genes encoding both the putative adrenomedullin receptors, termed calcitonin receptor-like receptor (CRLR) and L1, were expressed in the rat adrenal medulla. Dual-colour indirect-labelled immunofluorescence was used to localise phenylethanolamine N-methyltransferase (PNMT) and the adrenomedullin receptor in the same section. PNMT is the enzyme that converts noradrenaline to adrenaline and is not expressed in noradrenaline-secreting cells. These studies revealed that both CRLR and L1 were expressed only in cells that did not express PNMT, suggesting that adrenomedullin receptors are only found in noradrenaline-secreting cells. Further evidence to support this conclusion was provided by the demonstration of colocalisation of adrenomedullin receptors with dopamine beta-hydroxylase, confirming the presence of the receptors in medullary chromaffin cells. Taken together, these data suggest that adrenomedullin acts through a specific adrenomedullin receptor in the rat adrenal medulla. RT-PCR and northern blot analysis revealed greater abundance of mRNA for L1 than for CRLR, possibly suggesting that L1 may be the major adrenomedullin receptor expressed in this tissue. As it has been reported that adrenomedullin is synthesised predominantly by adrenaline-secreting cells, it appears likely that adrenomedullin is a paracrine regulator in the adrenal medulla.  相似文献   

20.
Steroid regulation of monoamine oxidase activity in the adrenal medulla   总被引:3,自引:0,他引:3  
Administration of different steroid hormones in vivo has distinct and specific effects on the MAO activity of the adrenal medulla. In an effort to reconstitute these effects in defined cells, we have isolated endothelial cells and chromaffin cells from the bovine adrenal medulla and tested each cell type for sensitivity to these steroids. As in the intact animal, we found that endothelial cell MAO activity was stimulated 1.5- 2.5-fold by 10 microM progesterone, hydrocortisone, and dexamethasone, inhibited by ca. 50% by 17-alpha-estradiol, but unaffected by testosterone. The type of MAO in the endothelial cells was found to be exclusively of the A type. The chromaffin cells had MAO B exclusively and were inert to treatment with dexamethasone. The mode of action of the various steroids on MAO A activity in endothelial cells seemed to be that of affecting the number of MAO molecules, as binding of [3H]pargyline, an MAO inhibitor, changed in proportion to changes in enzyme activity. Consistently, the kinetic parameters for MAO A showed changes in Vmax but not Km under all conditions. The specificity of steroid action on MAO A activity was also supported by the fact that steroid-induced changes in total cell division ([14C]thymidine incorporation) and total protein synthesis ([14C]leucine incorporation) were seen after changes in MAO A. We conclude that the differential effects of steroids on MAO activity in the intact adrenal medulla can be reproduced in cultured adrenal medullary endothelial cells but not in chromaffin cells. Therefore we suggest that the action of these steroid hormones on the intact adrenal medulla may be restricted to the endothelial cell component of this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号