首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We have determined the sites of hypoxic vasoconstriction in ferret lungs. Lungs of five 3- to 5-wk-old and five adult ferrets were isolated and perfused with blood. Blood flow was adjusted initially to keep pulmonary arterial pressure at 20 cmH2O and left atrial and airway pressures at 6 and 8 cmH2O, respectively (zone 3). Once adjusted, flow was kept constant throughout the experiment. In each lung, pressures were measured in subpleural 20- to 50-microns-diam arterioles and venules with the micropipette servo-nulling method during normoxia (PO2 approximately 100 Torr) and hypoxia (PO2 less than 50 Torr). In normoxic adult ferret lungs, approximately 40% of total vascular resistance was in arteries, approximately 40% was in microvessels, and approximately 20% was in veins. With hypoxia, the total arteriovenous pressure drop increased by 68%. Arterial and venous pressure drops increased by 92 and 132%, respectively, with no change in microvascular pressure drop. In 3- to 5-wk-old ferret lungs, the vascular pressure profile during normoxia and the response to hypoxia were similar to those in adult lungs. We conclude that, in ferret lungs, arterial and venous resistances increase equally during hypoxia, resulting in increased microvascular pressures for fluid filtration.  相似文献   

2.
The purpose of this study was to determine whether pulmonary venous pressure increases during alveolar hypoxia in lungs of newborn pigs. We isolated and perfused with blood the lungs from seven newborn pigs, 6-7 days old. We maintained blood flow constant at 50 ml.min-1.kg-1 and continuously monitored pulmonary arterial and left atrial pressures. Using the micropuncture technique, we measured pressures in 10 to 60-microns-diam venules during inflation with normoxic (21% O2-69-74% N2-5-10% CO2) and hypoxic (90-95% N2-5-10% CO2) gas mixtures. PO2 was 142 +/- 21 Torr during normoxia and 20 +/- 4 Torr during hypoxia. During micropuncture we inflated the lungs to a constant airway pressure of 5 cmH2O and kept left atrial pressure greater than airway pressure (zone 3). During hypoxia, pulmonary arterial pressure increased by 69 +/- 24% and pressure in small venules increased by 40 +/- 23%. These results are similar to those obtained with newborn lambs and ferrets but differ from results with newborn rabbits. The site of hypoxic vasoconstriction in newborn lungs is species dependent.  相似文献   

3.
The purpose of this study was to determine the sites of hypoxic vasoconstriction in lungs of newborn rabbits. We isolated and perfused with blood the lungs from 19 rabbit pups, 7-23 days old. We maintained blood flow constant, continuously monitored pulmonary arterial and left atrial pressures, and alternated ventilation of the lungs with 95% O2-5% CO2 (control), and 95% N2-5% CO2 (hypoxia). Using micropipettes and a servonulling device, we measured pressures in 20-60-micron-diam subpleural arterioles and venules during control and hypoxic conditions. We inflated the lungs to a constant airway pressure of 5-7 cmH2O and kept left atrial pressure greater than airway pressure (zone 3) during micropuncture. In eight lungs we measured microvascular pressures first during control and then during hypoxia. We reversed this order in four lungs. In seven lungs we measured microvascular pressures only during hypoxia. We found a significant increase in pulmonary arterial pressure with no change in microvascular pressures. These results indicate that the site of hypoxic vasoconstriction in lungs of newborn rabbits is arteries greater than 60 micron in diameter.  相似文献   

4.
The major purpose of this study was to determine whether the longitudinal distribution of pulmonary vascular pressures changes with postnatal age in rabbits. Using the direct micropuncture technique, we measured pressures in 20- to 80-microns-diam arterioles and venules in isolated lungs of rabbits of different postnatal ages. To determine the contribution of vasomotor tone, we added the vasodilator papaverine to the perfusate of some lungs of each age group. We compared vascular pressures measured at blood flow rates chosen to approximate in vivo cardiac outputs. In untreated lungs, the resistance across 20- to 80-microns-diam microvessels decreased from 12- to 72-h-old (0.022 +/- 0.009 cmH2O.min.kg.ml-1) to 5- to 15-day-old rabbits (0.008 +/- 0.007 cmH2O.min.kg.ml-1) and remained at this lower level in adults (0.013 +/- 0.008 cmH2O.min.kg.ml-1). In contrast, in papaverine-treated lungs, the resistance across 20- to 80-microns-diam microvessels did not change between 12- to 72-h-old (0.007 +/- 0.005 cmH2O.min.kg.ml-1) and 5- to 15-day-old rabbits (0.005 +/- 0.002 cmH2O.min.kg.ml-1) but increased between 5- to 15-day-old and adult rabbits (0.014 +/- 0.007 cmH2O.min.kg.ml-1). Thus vasomotor tone contributed to the postnatal change in the distribution of vascular pressures across lungs of rabbits.  相似文献   

5.
To determine the effect of lung inflation and left atrial pressure on the hydrostatic pressure gradient for fluid flux across 20- to 60-microns-diam venules, we isolated and perfused the lungs from newborn rabbits, 7-14 days old. We used the micropuncture technique to measure venular pressures in some lungs and perivenular interstitial pressures in other lungs. For all lungs, we first measured venular or interstitial pressures at a constant airway pressure of 5 or 15 cmH2O with left atrial pressure greater than airway pressure (zone 3). For most lungs, we continued to measure venular or interstitial pressures as we lowered left atrial pressure below airway pressure (zone 2). Next, we inflated some lungs to whichever airway pressure had not been previously used, either 5 or 15 cmH2O, and repeated venular or interstitial pressures under one or both zonal conditions. We found that at constant blood flow a reduction of left atrial pressure below airway pressure always resulted in a reduction in venular pressure at both 5 and 15 cmH2O airway pressures. This suggests that the site of flow limitation in zone 2 was located upstream of venules. When left atrial pressure was constant relative to airway pressure, the transvascular gradient (venular-interstitial pressures) was greater at 15 cmH2O airway pressure than at 5 cmH2O airway pressure. These findings suggest that in newborn lungs edema formation would increase at high airway pressures only if left atrial pressure is elevated above airway pressure to maintain zone 3 conditions.  相似文献   

6.
We studied the bronchial arterial blood flow (Qbr) and bronchial vascular resistance (BVR) in sheep prepared with carotid-bronchial artery shunt. Nine adult sheep were anesthetized, and through a left thoracotomy a heparinized Teflon-tipped Silastic catheter was introduced into the bronchial artery. The other end of the catheter was brought out through the chest wall and through a neck incision was introduced into the carotid artery. A reservoir filled with warm heparinized blood was connected to this shunt. The height of blood column in the reservoir was kept constant at 150 cm by adding more blood. Qbr was measured, after interrupting the carotid-bronchial artery flow, by the changes in the reservoir volume. The bronchial arterial back pressure (Pbr) was measured through the shunt when both carotid-bronchial artery and reservoir Qbr had been temporarily interrupted. The mean Qbr was 34.1 +/- 2.9 (SE) ml/min, Pbr = 17.5 +/- 3.3 cmH2O, BVR = 3.9 +/- 0.5 cmH2O X ml-1 X min, mean pulmonary arterial pressure = 21.5 +/- 3.6 cmH2O, and pulmonary capillary wedge pressure (Ppcw) = 14.3 +/- 3.7 cmH2O. We further studied the effect of increased left atrial pressure on these parameters by inflating a balloon in the left atrium. The left atrial balloon inflation increased Ppcw to 25.3 +/- 3.1 cmH2O, Qbr decreased to 21.8 +/- 2.4 ml/min (P less than 0.05), and BVR increased to 5.5 +/- 1.0 cmH2O.ml-1.min (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The present study addresses the effect of a sustained change in pressure on microvascular permeability assessed by hydraulic conductivity (Lp) measurements from microvessels of the rat mesentery. With a microperfusion technique, transvascular filtration (normalized to surface area; Jv/S) and Lp were measured in small arterioles (baseline Lp= 0.26 x 10(-7) cm.s(-1).cmH2O(-1)) and venules (baseline Lp= 2.88 x 10(-7) cm.s(-1).cmH2O(-1)). The main finding of this study is that step increases in microvascular pressure led to time-dependent alterations of L(p). Immediately after a twofold step increase in pressure, Jv/S increased in proportion to the pressure change. This observation is consistent with Starling's law that predicts filtration proportional to the overall pressure gradient when Lp is constant. However, when Jv/S measurements continued for 60-90 min past the step in pressure, there was an initial decrease in Jv/S for 30 min ("sealing effect") followed by a substantial increase in Jv/S out to 90 min. The sustained increase in Jv/S suggests an increase in Lp of 36 +/- 7% for small arterioles and 42 +/- 5% for small venules (P < 0.05 for both). In addition, the increase in Lp in response to an increase in pressure was attenuated significantly by nitric oxide synthase inhibition. These results indicate that a pressure-induced mechanical stimulus (possibly Jv) activates a NO-dependent biochemical response that leads to an increase in hydraulic conductivity.  相似文献   

8.
Positive end-expiratory pressure (PEEP) increases central venous pressure, which in turn impedes return of systemic and pulmonary lymph, thereby favoring formation of pulmonary edema with increased microvascular pressure. In these experiments we examined the effect of thoracic duct drainage on pulmonary edema and hydrothorax associated with PEEP and increased left atrial pressure in unanesthetized sheep. The sheep were connected via a tracheostomy to a ventilator that supplied 20 Torr PEEP. By inflation of a previously inserted intracardiac balloon, left atrial pressure was increased to 35 mmHg for 3 h. Pulmonary arterial, systemic arterial, and central venous pressure as well as thoracic duct lymph flow rate were continuously monitored, and the findings were compared with those in sheep without thoracic duct cannulation (controls). At the end of the experiment we determined the severity of pulmonary edema and the volume of pleural effusion. With PEEP and left atrial balloon insufflation, central venous and pulmonary arterial pressure were increased approximately threefold (P less than 0.05). In sheep with a thoracic duct fistula, pulmonary edema was less (extra-vascular fluid-to-blood-free dry weight ratio 4.8 +/- 1.0 vs. 6.1 +/- 1.0; P less than 0.05), and the volume of pleural effusion was reduced (2.0 +/- 2.9 vs. 11.3 +/- 9.6 ml; P less than 0.05). Our data signify that, in the presence of increased pulmonary microvascular pressure and PEEP, thoracic duct drainage reduces pulmonary edema and hydrothorax.  相似文献   

9.
We sought to determine whether pulmonary intravascular macrophages are involved in pulmonary vascular sensitivity to intravenously injected particles in sheep. We estimated that newborn lambs have few of these macrophages at birth but develop a 10-fold greater density within 2 wk. Awake, chronically instrumented newborn lambs showed no change in pulmonary vascular driving pressure (pulmonary arterial minus left atrial pressure) after injection of either liposomes [2 +/- 3 (SD) cmH2O; n = 5] or Monastral blue particles (3 +/- 2 cmH2O; n = 6) and showed no net pulmonary production of thromboxane B2, the stable metabolite of the vasoconstrictor thromboxane A2. In contrast, five of those lambs 2 wk later showed both an increase in pulmonary vascular driving pressure after injection of liposomes and Monastral blue (20 +/- 16 and 25 +/- 15 cmH2O, respectively; P < 0.05) and net pulmonary production of thromboxane B2 (171 +/- 103 and 429 +/- 419 pg/ml plasma, respectively; P < 0.05). Older lambs (n = 5) had higher pulmonary uptakes than newborn lambs (n = 6) of radioactive liposomes (47 +/- 13 vs. 12 +/- 10%; P < 0.01) and Monastral blue (53 +/- 6 vs. 21 +/- 10%; P < 0.05). We conclude that pulmonary intravascular macrophages are responsible for the sensitivity of sheep to intravenous foreign particles and are essential for a cascade of processes leading to microvascular injury.  相似文献   

10.
Effect of progressive exercise on lung fluid balance in sheep   总被引:3,自引:0,他引:3  
The purpose of this study is to determine the roles of cardiac output and microvascular pressure on changes in lung fluid balance during exercise in awake sheep. We studied seven sheep during progressive treadmill exercise to exhaustion (10% grade), six sheep during prolonged constant-rate exercise for 45-60 min, and five sheep during hypoxia (fraction of inspired O2 = 0.12) and hypoxic exercise. We made continuous measurements of pulmonary arterial, left atrial, and systemic arterial pressures, lung lymph flow, and cardiac output. Exercise more than doubled cardiac output and increased pulmonary arterial pressures from 19.2 +/- 1 to 34.8 +/- 3.5 (SE) cmH2O. Lung lymph flow increased rapidly fivefold during progressive exercise and returned immediately to base-line levels when exercise was stopped. Lymph-to-plasma protein concentration ratios decreased slightly but steadily. Lymph flows correlated closely with changes in cardiac output and with calculated microvascular pressures. The drop in lymph-to-plasma protein ratio during exercise suggests that microvascular pressure rises during exercise, perhaps due to increased pulmonary venous pressure. Lymph flow and protein content were unaffected by hypoxia, and hypoxia did not alter the lymph changes seen during normoxic exercise. Lung lymph flow did not immediately return to base line after prolonged exercise, suggesting hydration of the lung interstitium.  相似文献   

11.
After resecting the intercostal muscles and thinning the endothoracic fascia, we micropunctured the lung tissue through the intact pleural space at functional residual capacity (FRC) and at volumes above FRC to evaluate the effect of increasing parenchymal stresses on pulmonary interstitial pressure (Pip). Pip was measured at a depth of approximately 230 microns from the pleural surface, at 50% lung height, in 12 anesthetized paralyzed rabbits oxygenated via a tracheal tube with 50% humidified O2. Pip was -10 +/- 1.5 cmH2O at FRC. At alveolar pressure of 5 and 10 cmH2O, lung volume increased by 8.5 and 19 ml and Pip decreased to -12.4 +/- 1.6 and -12.3 +/- 5 cmH2O, respectively. For the same lung volumes held by decreasing pleural surface pressure to about -5 and -8.5 cmH2O, Pip decreased to -17.4 +/- 1.6 and -23.8 +/- 5 cmH2O, respectively. Because Pip is more negative than pleural pressure, the data suggest that in intact pulmonary interstitium the pressure of the liquid phase is primarily set by the mechanisms controlling interstitial fluid turnover.  相似文献   

12.
The macrophage-derived cytokine tumor necrosis factor alpha (TNF alpha) has been proposed as the major mediator of endotoxin-induced injury. To examine whether a single infusion of human recombinant TNF alpha (rTNF alpha) reproduces the pulmonary effects of endotoxemia, we infused rTNF alpha (0.01 mg/kg) over 30 min into six chronically instrumented awake sheep and assessed the ensuing changes in hemodynamics, lung lymph flow and protein concentration, and number of peripheral blood and lung lymph leukocytes. In addition, levels of thromboxane B2, 6-ketoprostaglandin F1 alpha, prostaglandin E2, and leukotriene B4 were measured in lung lymph. Pulmonary arterial pressure (Ppa) peaked within 15 min of the start of rTNF alpha infusion [base-line Ppa = 22.0 +/- 1.5 (SE) cmH2O; after 15 min of rTNF alpha infusion, Ppa = 54.2 +/- 5.4] and then fell toward base line. The pulmonary hypertension was accompanied by hypoxemia and peripheral blood and lung lymph leukopenia, both of which persisted throughout the 4 h of study. These changes were followed by an increase in protein-rich lung lymph flow (base-line lymph protein clearance = 1.8 +/- 0.4 cmH2O; 3 h after rTNF alpha infusion, clearance = 5.6 +/- 1.2), consistent with an increase in pulmonary microvascular permeability. Cardiac output and left atrial pressure did not change significantly throughout the experiment. Light-microscopic examination of lung tissue at autopsy revealed congestion, neutrophil sequestration, and patchy interstitial edema. We conclude that rTNF alpha induces a response in awake sheep remarkable similar to that of endotoxemia. Because endotoxin is a known stimulant of TNF alpha production, TNF alpha may mediate endotoxin-induced lung injury.  相似文献   

13.
To study the mechanical effects of lung edema on the pulmonary circulation, we determined the longitudinal distribution of vascular resistance in the arteries, veins, and microvessels, and the distribution of blood flow in isolated blood-perfused rabbit lungs with varying degrees of edema. Active vasomotor changes were eliminated by adding papaverine to the perfusate. In three groups of lungs with either minimal [group I, mean wet-to-dry weight ratio (W/D) = 5.3 +/- 0.6 (SD), n = 7], moderate (group II, W/D = 8.5 +/- 1.2, n = 10), or severe (group III, W/D = 9.9 +/- 1.6, n = 5) edema, we measured by direct micropuncture the pressure in subpleural arterioles and venules (20-60 micron diam) and in the interstitium surrounding these vessels. We also measured pulmonary arterial and left atrial pressures and lung blood flow, and in four additional experiments we used radio-labeled microspheres to determine the distribution of blood flow during mild and severe pulmonary edema. In lungs with little or no edema (group I) we found that 33% of total vascular pressure drop was in arteries, 60% was in microvessels, and 7% was in veins. Moderate edema (group II) had no effect on total vascular resistance or on the vascular pressure profile, but severe edema (group III) did increase vascular resistance without changing the longitudinal distribution of vascular resistance in the subpleural microcirculation. Perivascular interstitial pressure relative to pleural pressure increased from 1 cmH2O in group I to 2 in group II to 4 in group III lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The macrophage- and monocyte-produced cytokine tumor necrosis factor alpha (TNF alpha) has been proposed as a major mediator of endotoxin-induced injury. To determine if TNF alpha could reproduce the effects of endotoxin on the lung, we intravenously administered 10 micrograms/kg of human recombinant TNF alpha into five chronically instrumented unanesthetized sheep on two occasions to characterize the TNF alpha response and its reproducibility. We assessed changes in lung mechanics, pulmonary and systemic hemodynamics, gas exchange, and the number and type of peripheral blood leukocytes. We also determined airway reactivity by use of aerosolized histamine before and after TNF alpha infusion. Pulmonary arterial pressure (Ppa) peaked within 30 min of initiating the TNF alpha infusion [47.7 +/- 2.2 vs. 15.9 +/- 0.4 (SE) cmH2O at base line] and then returned toward base line over 4 h. There was a brief decline in left atrial pressure after TNF alpha. Pulmonary hypertension was accompanied by leukopenia, neutropenia, and increases in the alveolar-arterial O2 difference (AaDO2). Dynamic lung compliance (Cdyn) declined after TNF alpha, reaching a nadir within 15 min of the initiation of the TNF alpha infusion [0.045 +/- 0.007 vs. 0.093 +/- 0.007 (+/- SE) l/cmH2O at base line]. Resistance to airflow across the lung (RL) increased from 1.2 +/- 0.2 cmH2O.l-1.s at base line, peaking at 5.4 +/- 1.3 cmH2O.l-1.s 30 min after the start of the TNF alpha infusion. Alterations in Cdyn and RL persisted for 4 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Six chronically catheterized sheep were exposed to 1,500-rad whole-lung irradiation and followed for a four-week period. Pulmonary arterial, left atrial and systemic arterial pressures, cardiac output, arterial blood gases, and pH were measured at base line and biweekly following radiation. Pulmonary vasoreactivity to 12% O2, 100% O2, and an analogue of prostaglandin H2 (PGH2-A) was also assessed. Five nonirradiated sheep served as controls. By the 2nd wk following irradiation, pulmonary vascular resistance had doubled. Final pulmonary arterial pressure was increased 50% over the base-line value (base line = 14 +/- 1 cm H2O; final 22 +/- 2; mean +/- SE; P less than 0.05). Arterial PO2 was decreased to approximately 70 Torr throughout the study. In addition, pulmonary vasoreactivity to PGH2-A, but not to breathing 12 or 100% O2, was significantly increased above base line in the irradiated animals (P less than 0.05). Morphometric techniques applied to the lungs in which the pulmonary arterial circulation was distended with barium gelatin mixture, showed extension of muscle into the distal intra-acinar arteries, and a reduction in both the external diameter and the number of barium-filled peripheral arteries in the irradiated animals. Thus thoracic irradiation results in functional and structural changes of chronic pulmonary hypertension and increased pulmonary vasoreactivity to PGH2-A. The structural changes in the peripheral pulmonary arterial bed may contribute to the increased pulmonary vascular reactivity following thoracic irradiation.  相似文献   

16.
Ten experiments were conducted on nine sheep to determine the effects of endotoxemia (1.0 microgram/kg iv over 15 min) on the vascular resistances of two segments of the pulmonary circulation. The first segment (S1) was from the main pulmonary artery to the site in the pulmonary veins corresponding to the pressure measured with a deflated and wedged 7-Fr Swan-Ganz catheter. The second segment (S2) was from the wedge pressure measurement site to the left atrium. Endotoxemia caused both pulmonary arterial pressure and pulmonary arterial wedge pressure to increase significantly during early (phase 1) and late (phase 2) periods of response; left atrial pressure was significantly decreased during both phases. Normalized cardiac output decreased significantly at 35 and 180 min but not at 240 min after starting endotoxin infusion. The calculated resistance of S1 significantly increased from a base-line value of 3.03 +/- 0.31 (cmH2O.1-1.min) to 7.60 +/- 0.71, 6.34 +/- 1.22, and 6.66 +/- 1.35 at 35, 180, and 240 min, respectively. Calculated resistance of S2 was 1.32 +/- 0.14 at base line and increased significantly to 11.43 +/- 1.66 at 35 min, 4.45 +/- 0.47 at 180 min, and 3.32 +/- 0.61 at 240 min. The calculated percent of total pulmonary resistance in S2 increased significantly from approximately 31 to 59% during phase 1 and remained significantly increased at 41% from 90 to 180 min after endotoxin. Hematocrit increased by 40% at 35 min, whereas plasma total protein concentration increased by only 8% at 35 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The elasticity and branching order of noncapillary microscopic blood vessels less than 100 microns diam were studied in human lungs obtained 7-30 h postmortem, using a silicone elastomer method that selectively filled pulmonary arterioles or venules. The lungs were inflated to 10 cmH2O pressure and a gradient of transmural vascular pressure of 0-17 cm H2O, from lobe base to apex, was established in the silicone-filled vascular system. Histological materials were obtained after airway fixation by formaldehyde solution and analyzed for vessel diameter in the branching order of 1, 2, and 3, with the smallest noncapillary vessel designated as order 1, in accord with the Strahler system. The change in vessel diameter within a branching order at different levels of transmural pressure is a derived measure of vascular elasticity expressed as compliance coefficient alpha, alpha Values are 0.128, 0.164, and 0.210 micron/cmH2O or 0.682, 0.472, and 0.354%/cmH2O, respectively, of orders 1-3 for arterioles and 0.187, 0.215, and 0.250 micron/cmH2O or 0.992, 0.612, and 0.424%/cmH2O, respectively, of orders 1-3 for venules. The percent is normalized with D0, which is the value of diameter (D) when the transmural pressure is zero. These data are compared with those for the cat where alpha = 0.274 for similar juxta-alveolar vessels.  相似文献   

18.
Six chronically catheterized awake sheep were given the cyclooxygenase inhibitor indomethacin (5 mg/kg) twice a day over a 3-wk period. Three sheep receiving vehicle alone served as controls. Pulmonary arterial, left atrial, and systemic arterial pressures, cardiac output, blood gases, and pH were measured biweekly. Pulmonary vasoreactivity to 12% O2 and an analogue of prostaglandin H2 (PGH2-A) was also assessed. As a percent of base line, indomethacin caused a doubling in pulmonary vascular resistance (3 wk = 190 +/- 26%, mean +/- SE) and a 50% increase in pulmonary arterial pressure (3 wk = 151 +/- 9%). Vasoreactivity to 12% O2 increased approximately fourfold during the 1st wk of treatment and then declined. Vasoreactivity to PGH2-A increased steadily, nearly doubling by 3 wk. Light-microscopic counts of peripheral lung biopsy tissue revealed marked sequestration of granulocytes. Morphometric techniques applied to lungs removed at autopsy and fixed with the pulmonary arteries distended with barium gelatin mixture showed a significant reduction in number of barium-filled peripheral arteries and reduction in their external diameter. We conclude that repeated administration of indomethacin alters pulmonary vasoreactivity and causes sustained pulmonary hypertension. Structural studies reveal peripheral lung inflammation and changes in the arterial circulation that are perhaps more consistent with maintained vasoconstriction than chronic pulmonary hypertension.  相似文献   

19.
Pulmonary microvascular and alveolar epithelial permeability were evaluated in vivo by scintigraphic imaging during lung distension. A zone of alveolar flooding was made by instilling a solution containing 99mTc-albumin in a bronchus. Alveolar epithelial permeability was estimated from the rate at which this tracer left the lungs. Microvascular permeability was simultaneously estimated measuring the accumulation of (111)In-transferrin in lungs. Four levels of lung distension (corresponding to 15, 20, 25, and 30 cmH2O end-inspiratory airway pressure) were studied during mechanical ventilation. Computed tomography scans showed that the zone of alveolar flooding underwent the same distension as the contralateral lung during inflation with gas. Increasing lung tissue stretch by ventilation at high airway pressure immediately increased microvascular, but also alveolar epithelial, permeability to proteins. The same end-inspiratory pressure threshold (between 20 and 25 cmH2O) was observed for epithelial and endothelial permeability changes, which corresponded to a tidal volume between 13.7 +/- 4.69 and 22.2 +/- 2.12 ml/kg body wt. Whereas protein flux from plasma to alveolar space ((111)In-transferrin lung-to-heart ratio slope) was constant over 120 min, the rate at which 99mTc-albumin left air spaces decreased with time. This pattern can be explained by changes in alveolar permeability with time or by a compartment model including an intermediate interstitial space.  相似文献   

20.
In the rat, the spleen is a major site of fluid efflux out of the blood. By contrast, the mesenteric vasculature serves as a blood reservoir. We proposed that the compliance and myogenic responses of these vascular beds would reflect their different functional demands. Mesenteric and splenic arterioles ( approximately 150-200 microm) and venules (<250 microm) from rats anesthetized with pentobarbital sodium were mounted in a pressurized myograph. Mesenteric arterial diameter decreased from 146 +/- 6 to 133 +/- 6 microm on raising intraluminal pressures from 80 to 120 mmHg. This response was enhanced in the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME; 139 +/- 6 to 112 +/- 7 microm). There was no such myogenic response in the splenic arterioles, except in the presence of l-NAME (194 +/- 4 to 164 +/- 4.2 microm). We propose that, whereas mesenteric arterioles exhibit myogenic responses, this is normally masked by NO-mediated dilation in the splenic vessels. The mesenteric venules were highly distensible (active, 184 +/- 15 to 320 +/- 30.9 microm; passive in Ca(2+)-free media, 209 +/- 31 to 344 +/- 27 microm; 4-8 mmHg) compared with the splenic vessels (active, 169 +/- 11 to 184 +/- 16 microm; passive, 187 +/- 12 to 207 +/- 17 microm). We conclude that, in response to an increase in perfusion pressure, mesenteric arterial diameter would decrease to limit the changes in flow and microvascular pressure. In addition, mesenteric venous capacitance would increase. By contrast, splenic arterial diameter would increase, while there would be little change in venous diameter. This would enhance the increase in intrasplenic microvascular pressure and increase fluid extravasation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号