首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Jasmonic acid (JA) and its methyl ester (JA-Me) promoted the abscission of bean petiole expiants in the dark and light, and the activity of these compounds was almost same. JA and JA-Me did not enhance ethylene production in bean petiole expiants in the light, indicating that the abscission-promoting effects of these compounds are not the result of ethylene. Cells in the petiole adjacent to the abscission zone expanded during abscission but not in the pulvinus, and JA-Me promoted cell expansion in the petiole and the pulvinus. JA-Me had no effect on the total amounts of pectic and hemicellulosic polysaccharides in 2-mm segments of the abscission region, which included 1 mm of pulvinus and 1 mm of petiole from the abscission zone. On the other hand, the total amounts of cellulosic polysaccharides in this region were reduced significantly by the addition of JA-Me in the light. JA-Me had no effect on the neutral sugar composition of hemicellulosic polysaccharides during abscission. The decrease in the endogenous levels of UDP-sugars in the petiole adjacent to the abscission zone was accelerated during abscission by the addition of JA-Me in the light. Cellulase activities of pulvinus and petiole in 10-day-old seedlings were enhanced by the addition of JA. These results suggest that the promoting effect of JA or JA-Me on the abscission of bean petiole explants is due to the change of sugar metabolism in the abscission zone, in which the increase in cellulase activity involves the degradation of cell wall polysaccharides. Jasmonic acid (JA) and its methyl ester (JA-Me) are considered to be putative plant hormones for a number of reasons, including their wide occurrence in the plant kingdom, biologic, activities in multiple aspects at low concentrations, and their interaction with other plant hormones (for reviews see Parthier 1991, Hamberg and Gardner 1992, Sembdner and Parthier 1993, Ueda et al. 1994a). We have already reported that JA and JA-Me and C18-unsaturated fatty acids, which are considered to be the substrates of the biosynthesis of jasmonates, are powerful senescence-promoting substances (Ueda et al. 1982b, 1991a). Senescence symptoms induced by these compounds are identical to those of natural senescence. Recently we have also found that JA inhibited indole-3-acetic acid (IAA)-induced elongation of oat (Avena sativa L. cv. Victory) coleoptile segments by inhibiting the synthesis of cell wall polysaccharides (Ueda et al. 1994b, 1995). These facts led us to study the mode of actions of JA and JA-Me on promoting abscission, which is considered the last dramatic phenomenon of senescence. In this paper we report that JA and JA-Me promote abscission in bean (Phaseolus vulgaris L. cv. Masterpiece) petiole expiants and that the changes in the metabolism of cell wall polysaccharides in the petiole and the pulvinus adjacent to the abscission zone are involved in the promotive effects of these compounds.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - DCB 2,6-dichlorobenzonitrile - HPLC high performance liquid chromatography - IAA indole-3-acetic acid - JA jasmonic acid - JA-Me methyl jasmonate - MES 2-(N-morpholino)ethane-sulfonic acid, monohydrate - TCA trichloroacetic acid - Tris 2-amino-2-hydroxymethy-1,3-propanediole  相似文献   

2.
In debladed bean petioles calcium and dry weight increased in the abscission zone during an induction period of 14 hr. Before the microscopic appearance of the abscission layer calcium decreased in the abscission zone and increased in the petiole. Dry matter began to decrease in both the abscission zone and the petiole 24 hr after deblading. The first visual change in the cells of the abscission zone was a swelling of the pectic materials of the cell walls. This was followed by breakdown of other cell wall components, i.e., non-cellulosic polysaccharides and cellulose. The cellulose of the cell walls adjacent and distal to the abscission layer was found to be altered; however, no lignin was present during abscission layer development. The alteration of pectic materials, coupled with breakdown of cell wall components, resulted in the collapse of cells of the abscission layer just prior to separation. Auxin delayed abscission and also delayed the initial increase in calcium, the movement of calcium from the abscission zone to the petiole, and the decrease in dry weight.  相似文献   

3.
Roy Sexton 《Planta》1976,128(1):49-58
Summary Both scanning and transmission electron microscopes have been used to study the anatomy of the abscission zone of Impatiens sultani Hook. Evidence is presented to show that the fracture line follows the middle lamella in all the living cells of the abscission zone including those in the vascular traces. The separation of these cells is preceded by a breakdown of the middle lamellar region of the wall. The characteristics of this process vary in different cell types. Accompanying this breakdown is an enlargement of inner cortex cells mainly in a direction parallel to the axis of the petiole. It is suggested that this expansion of cells is necessary to produce the tensions which rupture the cuticle and xylem vessels prior to separation. The occurrence of transfer cells and tyloses in the abscission zone is also described and the physiological implications of their presence discussed.  相似文献   

4.
Jasmonic acid (JA) and its related compounds (jasmonates) applied to plant tissues exert either inhibitory or promotive effects in growth and developmental processes, which in some ways are similar to abscisic acid. However, little is known about the mode of action of the jamonates at the tissue or organ levels. Here, we review partial evidence for the physiological action of the jasmonates on cell elongation and abscission.
Jasmonates inhibit the IAA-induced cell elongation of oat coleoptile segments not by affecting energy production, osmoregulation and cell wall loosening, but by inhibiting the synthesis of cell wall polysaccharides. The inhibition is partially reversed by simultaneous application of sucrose. Inhibition of IAA-induced elongation by JA is only observed in monocotyledons, not in dicotyledons. These effects suggest that jasmonates exert their inhibitory effect on cell elongation by affecting the metabolism of the cell wall polysaccharides in monocotyledons.
Jasmonates promote the abscission of bean petiole explants without enhancing ethylene production. Cells in the petiole adjacent to the abscission zone expand during abscission. In the abscission zone, jasmonates decrease the amount of cellulosic but not that of noncellulosic polysaccharides. Jasmonates increase the activities of cellulase and decrease the levels of UDP-sugars, which are important intermediates for the synthesis of cell wall polysaccharides in the abscission zone, probably resulting in the decreased level of cellulose and the mechanical weakness of cell walls.
Thus, it is suggested that jasmonates exert their multiple physiological effects by affecting the metabolic processes of cell wall polysaccharides.  相似文献   

5.
Distal applications of indol-3yl-acetic acid (IAA) to debladed cotyledonary petioles of cotton (Gossypium hirsutum L.) seedlings greatly delayed petiole abscission, but similar applications of phenylacetic acid (PAA) slightly accelerated abscission compared with untreated controls. Both compounds prevented abscission for at least 91 h when applied directly to the abscission zone at the base of the petiole. The contrasting effects of distal IAA and PAA on abscission were correlated with their polar transport behaviour-[1-14C]IAA underwent typical polar (basipetal) transport through isolated 30 mm petiole segments, but only a weak diffusive movement of [1-14C]PAA occurred.Removal of the shoot tip substantially delayed abscission of subtending debladed cotyledonary petioles. The promotive effect of the shoot tip on petiole abscission could be replaced in decapitated shoots by applications of either IAA or PAA to the cut surface of the stem. Following the application of [1-14C]IAA or [1-14C]PAA to the cut surface of decapitated shoots, only IAA was transported basipetally through the stem. Proximal applications of either compound stimulated the acropetal transport of [14C]sucrose applied to a subtending intact cotyledonary leaf and caused label to accumulate at the shoot tip. However, PAA was considerably less active than IAA in this response.It is concluded that whilst the inhibition of petiole abscission by distal auxin is mediated by effects of auxin in cells of the abscission zone itself, the promotion of abscission by the shoot tip (or by proximal exogenous auxin) is a remote effect which does not require basipetal auxin transport to the abscission zone. Possible mechanisms to explain this indirect effect of proximal auxin on abscission are discussed.  相似文献   

6.
Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by OH is involved. Experimentally generated OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that OH rapidly and selectively dissolved a well‐developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well‐developed middle lamella, a unique structure, which is sensitive to the attack of OH, might be needed.  相似文献   

7.
Plant viruses use sieve elements in phloem as the route of long-distance movement and systemic infection in plants. Plants, in turn, deploy RNA silencing, R-gene mediated defence and other mechanisms to prevent phloem transport of viruses. Cell-to-cell movement of viruses from an initially infected leaf to stem and other parts of the plant could be another possibility for systemic invasion, but it is considered to be too slow. This idea is supported by observations made on viruses that are deficient in phloem loading. The leaf abscission zone forming at the base of the petiole may constitute a barrier that prevents viral cell-to-cell movement. The abscission zone and protective layer are difficult to localize in the petiole until the leaf reaches an advanced stage of senescence. Viruses tagged with the green fluorescent protein are helpful for localization and study of the developing abscission zone.  相似文献   

8.
A fundamental event in abscission is the breakdown of cell wall material in a discrete zone of cells known as the separation layer. Three dimensional images produced by viewing tissue prints of abscission zones on nitrocellulose (NC) membranes with incident illumination showed changes in the tissue integrity taking place in the separation layer as the process of abscission proceeded. The cell softening which occurs due to the dissolution of the cell wall appeared in the tissue prints as a diffuse line at the anatomical transition between the pulvinus and petiole and was easily observed on NC tissue prints of either longitudinal or serial cross-sections through abscission zones. In bean leaf abscission the dissolution of cell walls has been correlated with the appearance of a form of cellulase with an isoelectric point of pH 9.5. Antibodies specific for this enzyme were used to study the localization of 9.5 cellulase in the distal abscission zone of Phaseolus vulgaris L., cv Red Kidney after tissue printing on NC. It was found that 9.5 cellulase was localized in the separation layer but also occurred in the vascular tissue of the adjacent pulvinus. No antibody binding was observed in nonabscising tissue or preimmune controls. These results confirm previous biochemical studies and demonstrate that immunostaining of nitrocellulose tissue prints is a fast and reliable method to localize proteins or enzymes in plant tissue.  相似文献   

9.
An increase in starch content of cells in the abscission zone of the cotton explant appeared correlated with an increase in number of cells. A large increase in the number of cells in the abscission zone, concomitant with an increase in starch content, followed treatment with gibberellin as compared to auxin. In the final stages of abscission starch was hydrolyzed in the cells of the separation layer. Some starch remained after the petiole abscised.

A positive phloroglucinol-hydrochloric acid reaction in the cells of the petiole distal to the line of separation indicated the presence, not of lignin, but of soluble sugars and uronic acids. This reaction was especially intense following gibberellic acid treatment.

It was concluded that gibberellin in accelerating abscission leads to (1) an increase in cell number and starch content in the abscission zone, (2) the hydrolysis of starch in the separation layer just before abscission, and (3) the breakdown of polysaccharides and the release of soluble sugars and uronic acids. Auxin, an abscission retardant, either delays or prevents these events.

  相似文献   

10.
11.
Leaflet abscission in Sambucus nigra is the result of cell wall breakdown at the site of separation. Associated with wall degradation is an increase in the activity of the enzyme β1,4 glucanase (E.C.3.1.2.4) in the cells that comprise the abscission zone. The enzyme has been extracted from abscission zone tissue and purified using a substrate affinity column. A qualitative enzyme assay procedure has been developed and this has facilitated the purification process. The β1,4 glucanase enzyme has a pH optimum of 7 and a molecular mass of 54kDa. Antibodies have been raised to the purified protein. The role of the enzyme in the abscission process is discussed.  相似文献   

12.
13.
Leaf abscission in Phaseolus vulgaris L. cv. ‘Contender’ is associated with enzymatic changes during and prior to separation. Deblading resulted in a localized increase in dehydrogenase and acid phosphatase in the abscission zone. Increased enzyme activities were observed 24–48 hr after deblading. In debladed plants separation was complete in 6–8 days. At separation, dehydrogenase activity appeared to decrease and localization was specific to the protective layer, while the petiole side had no activity. In contrast, acid phosphatase activity was observed in some layers of cells on the petiole side after separation. Ethylene treatment promoted abscission and separation occurred in 24–48 hr in both debladed and intact plants. No protective layer was formed during ethylene-induced abscission. Enzymatic changes similar to those observed in debladed control plants were observed with ethylene treatment. Ethylene induced an additional abscission layer between the pulvinus and petiole, where an abscission layer normally does not form. In this ethylene-induced abscission layer, similar enzyme activities were detected.  相似文献   

14.
Abscission explants of bean (Phaseolus vulgaris L.) were treated with ethylene to induce cell separation at the primary abscission zone. After several days of further incubation of the remaining petiole in endogenously produced ethylene, the distal two-thirds of the petiole became senescent, and the remaining (proximal) portion stayed green. Cell-to-cell separation (secondary abscission) takes place precisely at the interface between the senescing yellow and the enlarging green cells. The expression of the abscission-associated isoform of β-1,4-glucanhydrolase, the activation of the Golgi apparatus, and enhanced vesicle formation occurred only in the enlarging cortical cells on the green side. These changes were indistinguishable from those that occur in normal abscission cells and confirm the conversion of the cortical cells to abscission-type cells. Secondary abscission cells were also induced by applying auxin to the exposed primary abscission surface after the pulvinus was shed, provided ethylene was added. Then, the orientation of development of green and yellow tissue was reversed; the distal tissue remained green and the proximal tissue yellowed. Nevertheless, separation still occurred at the junction between green and yellow cells and, again, it was one to two cell layers of the green side that enlarged and separated from their senescing neighbors. Evaluation of Feulgen-stained tissue establishes that, although nuclear changes occur, the conversion of the cortical cell to an abscission zone cell is a true transdifferentiation event, occurring in the absence of cell division.  相似文献   

15.
Methyl jasmonate (JA-Me) at a concentration of 0.5 % induced the formation of secondary abscission zone and senescence in several types of stem explants (only internode segment, internode segment with nodes and without leaves, internode segment with nodes and debladed petioles) of Bryophyllum calycinum when it was applied in various places of the stem or the debladed petiole as lanolin paste. In the presence of small leaves in stem explants methyl jasmonate also induced the formation of secondary abscission zone and senescence but the presence of larger leaves completely inhibited methyl jasmonate-induced processes. Auxin, (indole-3-acetic acid, IAA), at a concentration of 0.1 % extremely prevented the formation of secondary abscission zones and senescence in the stem tissues induced by methyl jasmonate. Similar relationship between auxin and methyl jasmonate to induce the formation of secondary abscission zone and senescence was found in decapitated shoot of the intact plant. Mechanisms of the formation of secondary abscission zone are also discussed in terms of the interaction of methyl jasmonate with auxin.  相似文献   

16.
Activities of degrading enzymes, hormones concentration and zymogram patterns were investigated during control and ethylene-induced abscission of tomato pedicel explants. Exogenous ethylene accelerated abscission of pedicel explants. It was showed that IAA concentration in abscission zone tended to decline at first and then was reduced before separation in control and ethylene-treatment. Moreover, IAA (indole acetic acid) and ABA (abscise acid) concentrations were elevated in each segment when exposing to ethylene, but GA1 + 3 (gibberellin1 + gibberellin3) concentration was decreased in abscission zone and the proximal side. Activities of cellulase, polygalacturonase and pectinesterase in the explants were induced in the separating process and strengthened by ethylene. However, comparing with the proximal side, cellulase and polygalacturonase activities in abscission zone and distal side were higher. Electrophoresis of isozymes revealed that at least three peroxidase and three superoxidase isozymes appeared in the explants, respectively. One peroxidase isozyme exhibited differentially among the three positions in control and ethylene-treatment. One esterase isozyme weakened or disappeared in the following hours, but three novel esterase isozymes were detectable from beginning of the process. The data presented support the hypothesis that the distal side, together with abscission zone of explants plays a more important role in separation than does the proximal side. The possible roles of degrading enzymes, hormones and isozymes in three segments during ethylene-induced abscission of tomato pedicel explants are discussed.  相似文献   

17.
Anatomical, histochemical, and mechanical studies indicated the presence of a highly modified and weakened stem base in Kochia scoparia L. Schrader. This base, the abscission zone, is the site for stem abscission. In autumn progressive desiccation of the plant is accompanied by the gradual loss of stem flexibility and concomitant increase in rigidity. The tissues of the stem remain relatively tough, but abscission zone tissues become very brash or brittle. When conditioned plants are stressed by winds, the stem acts as a moment arm, and large stresses are generated in the abscission zone. Rupture then occurs across the stem base, often abruptly. Strength tests indicated that breakage occurred with 40% less stress if a soil-inhabiting fungus (Rhizoctonia sp.) had degraded the nonlignified cell wall components of the abscission zone. Abscission, therefore, is caused by the wind, an external driving variable, but tissue desiccation, changes in anatomy, and decay are internal, preparatory variables.  相似文献   

18.
Deblading of bean leaves promoted the formation of callose and lignin in the abscission zone. The abscission layer became evident three days after deblading. The greatest increase in callose occurred in about two layers of cells during the development of the abscission layer. Four days after deblading, only a few layers of cells on the distal side of the abscission layer showed an increase in lignin. Lignification continued to expand to 8–10 layers of cells at the time of separation. After separation, the lignified cells remained with the petiole. Sieve elements in the abscission zone were covered with callose plugs and the vessels were occluded with tyloses.  相似文献   

19.
D. J. Carr  W. J. Burrows 《Planta》1967,73(4):357-368
Summary In blue lupin leaves, each leaflet abscises at an abscission zone situated in the pulvinus at its base. The time to abscission of leaflets of detached leaves is proportional to leaf age. Light accelerates abscission; within certain limits the acceleration is the greater the younger the leaf. At a given concentration, kinetin applied to a single leaflet accelerates leaflet abscission in young leaves kept in darkness, delays it in older ones. There is an interaction between kinetin and light which is dependent also on leaf age and kinetin concentration. The leaf can be considered as consisting of three regions, the petiole, the pulvinar region and the leaflets. The effects of kinetin and of light as well as their interactions depent on the regions of the leaf treated with these agents. Kinetin applied to a leaflet of a young leaf kept in darkness accelerates abscission, but kinetin applied to the pulvinar region of a similar leaf kept in darkness delays abscission. When any part of a leaf is illuminated, abscission is accelerated. The most light-sensitive region of the leaf is the pulvinar region, despite its relatively small area. Acceleration of abscission by light is greatest when illumination of the pulvinar region is combined with illumination of either the leaflets or the petiole. The interaction of light with kinetin is complex. Where the illuminated area includes the pulvinar region, kinetin delays abscission. This effect is most marked in the case where the pulvinar region alone is illuminated and kinetin is applied to a leaflet.Intrafoliar abscission as found in lupin leaves permits study of complex interactions of both distal and proximal stimuli involved in abscission.  相似文献   

20.
Summary Under various circumstances the tentacular crown of some sabellid polychaetes becomes detached from the body. Separation occurs always at a preestablished zone of abscission at the base of the crown. We used electron microscopy to study the abscission zone of Sabella penicillus, both in specimens whose crown was intact and in those whose crown had separated.The abscission zone is within the intermediate layer, between the crown skeleton and the body wall musculature, and only structures supported by the crown skeleton separate from the animal's body. Abscission involves a rupture of the paramyosin muscle cells which form bridges connecting extensions from the epimysium of the body wall musculature and from the cartilage matrix of the crown. After abscission the anterior and posterior ends of the cells remain in place on the crown and body respectively. Sabella penicillus appears able to control the loss of its tentacular crown, so this abscission is a kind of autotomy. Under some circumstances autotomy of the crown may permit escape or confer some surgical benefit to the animal. Using standard histology we found the same anatomical provision for crown abscission in a variety of sabellids. We conclude that differences in their capacities to autotomize the crown have a behavioral/physiological basis rather than an anatomical one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号