首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few studies of natural populations have investigated how phenotypic variation across populations relates to key factors in the environment and landscape structure. In the blue tits of southern France, inter-population differences in reproductive life-history traits (e.g. laying date and clutch size) are small, whatever the timing of maximum caterpillar availability, a key factor for offspring survival in tits. These small differences are attributed to gene flow between local populations occupying different habitat types. In contrast, in blue tits on the island of Corsica, we noted large differences in reproductive life-history traits between two populations, where each population is synchronized with the peak-date of caterpillar abundance. These occur over a short geographical distance (25km). Considering our study within a framework of long-term population studies in tits, our results support the hypothesis that different blue tit populations on Corsica show adaptive differences in life-history traits, and suggest that landscape structure at a small spatial scale can have profound effects on adaptive between-population differentiation in life-history traits that are closely linked with fitness.  相似文献   

2.
Increasing evidence suggests that climate change has consequences on avian breeding phenology. Here, variations in laying date and clutch size of great tit Parus major and blue tit Parus caeruleus within and between breeding populations through the western Palaearctic are examined in relation to climatic fluctuations, measured by the winter North Atlantic Oscillation (NAO) index. Within and across breeding sites, laying date was related to winter‐NAO index such that great and blue tit females lay earlier after warmer, moister winters (positive values of winter NAO‐index). The present study shows that for most populations there is an advancement of laying date, but the rate of change with respect to NAO significantly differed geographically across the western Palaearctic and did not differ between species. However, clutch size of great and blue tits was not affected by climatic fluctuations, presumably because the whole season is being shifted, but not in relation to food supplies. These combined analyses for the two species controlled for potentially confounding variables such as latitude, longitude, elevation and habitat of each study site.  相似文献   

3.
Quaternary climatic oscillations have been considered decisive in shaping much of the phylogeographic structure around the Mediterranean Basin. Within this paradigm, peripheral islands are usually considered as the endpoints of the colonization processes. Here, we use nuclear and mitochondrial markers to investigate the phylogeography of the blue tit complex (blue tit Cyanistes caeruleus, Canary blue tit C. teneriffae and azure tit C. cyanus), and assess the role of the Canary Islands for the geographic structuring of genetic variation. The Canary blue tit exhibits strong genetic differentiation within the Canary Islands and, in combination with other related continental species, provides an ideal model in which to examine recent differentiation within a closely related group of continental and oceanic island avian species. We analysed DNA sequences from 51 breeding populations and more than 400 individuals in the blue tit complex. Discrepancies in the nuclear and mitochondrial gene trees provided evidence of a complex evolutionary process around the Mediterranean Basin. Coalescent analyses revealed gene flow between C. caeruleus and C. teneriffae suggesting a dynamic process with multiple phases of colonization and geographic overlapping ranges. Microsatellite data indicated strong genetic differentiation among the Canary Islands and between the Canary archipelago and the close continental areas, indicating limited contemporary gene flow. Diversification of the blue tit complex is estimated to have started during the early Pliocene (≈ 5 Ma), coincident with the end of Messinian salinity crisis. Phylogenetic analyses indicated that the North African blue tit is derived from the Canary blue tits, a pattern is avian 'back colonization' that contrasts with more traditionally held views of islands being sinks rather than sources.  相似文献   

4.
1. Synchronous fluctuations of geographically separated populations are in general explained by the Moran effect, i.e. a common influence on the local population dynamics of environmental variables that are correlated in space. Empirical support for such a Moran effect has been difficult to provide, mainly due to problems separating out effects of local population dynamics, demographic stochasticity and dispersal that also influence the spatial scaling of population processes. Here we generalize the Moran effect by decomposing the spatial autocorrelation function for fluctuations in the size of great tit Parus major and blue tit Cyanistes caeruleus populations into components due to spatial correlations in the environmental noise, local differences in the strength of density regulation and the effects of demographic stochasticity. 2. Differences between localities in the strength of density dependence and nonlinearity in the density regulation had a small effect on population synchrony, whereas demographic stochasticity reduced the effects of the spatial correlation in environmental noise on the spatial correlations in population size by 21.7% and 23.3% in the great tit and blue tit, respectively. 3. Different environmental variables, such as beech mast and climate, induce a common environmental forcing on the dynamics of central European great and blue tit populations. This generates synchronous fluctuations in the size of populations located several hundred kilometres apart. 4. Although these environmental variables were autocorrelated over large areas, their contribution to the spatial synchrony in the population fluctuations differed, dependent on the spatial scaling of their effects on the local population dynamics. We also demonstrate that this effect can lead to the paradoxical result that a common environmental variable can induce spatial desynchronization of the population fluctuations. 5. This demonstrates that a proper understanding of the ecological consequences of environmental changes, especially those that occur simultaneously over large areas, will require information about the spatial scaling of their effects on local population dynamics.  相似文献   

5.
Dominance hierarchies usually form quickly among avian foraging groups because they are beneficial to most individuals by reducing conflict. Several characteristics that correlate with dominance rank have been identified in birds, but most of these conclusions rely on studies of temperate species. Hence, we studied whether captive group members of a subtropical species, grey‐cheeked fulvetta Alcippe morrisonia, form social dominance hierarchies when competing for food during the non‐breeding season. We also investigated whether sex, age, body condition and fat score were related to an individual's dominance rank which was established by counting aggressive interactions in six captive groups of nine individuals each. In all groups, linear dominance hierarchies were formed whereby yearlings dominated over adult birds, and individuals with a better body condition were also more dominant, while sex and fat score had no discernable effect. Male yearlings had significantly higher body masses and body condition indices than male adults, while female yearlings had significantly higher body masses, body condition indices and fat scores than female adults. However, there were no significant differences between male and female yearlings or adults for any of these variables. We suggest possible reasons for the dominance of yearlings, such as captive conditions or the higher body weight of yearlings.  相似文献   

6.
We sequenced the control region of the mitochondrial DNA from a sample of six European blue tit populations to investigate the phylogeography of Parus species. Along a transect from Barcelona, Spain to Oulu, Finland, the blue tit showed a different phylogeographic structure than the great tit and the willow tit. The southernmost sample from Barcelona consisted of two widely divergent maternal lineages (nucleotide divergence, π = 0.30%), a situation also found earlier in the French Alps. The more northern populations had a relatively uniform structure (π = 0.19%) with distinctive marks of a growing population, thus resembling the great tit populations (π = 0.19%). The amount of genetic variation among blue tits is lower than in the willow tit (π = 0.53%). This probably reflects a smaller long-term effective population size in the great tit and the blue tit than in the willow tit. The different genetic structure of the Barcelona population vs. the rest had an influence on the estimated population parameters, which are calculated based on the assumptions of genetic equilibrium of the populations.  相似文献   

7.
Although they have the potential to strongly influence individual fitness and the dynamics and productivity of populations, the survival consequences of pairing outcomes and the influence of current pairing outcomes on those in the future have rarely been addressed. Previously, we have shown that pair fidelity increases both survival and future pair fidelity in a population of great tits Parus major. The aim of this study was to explore the generality of our previous findings by evaluating the influence of current paring outcomes on survival and on future pairing outcomes in two different species and in different populations. We addressed our aims within a multievent capture–mark–recapture (MECMR) statistical framework, which accounts for differences in recapture rates and uncertainty in the assignment of pair status (i.e. whether an individual is breeding with the same partner or not). We applied the framework to breeding records of two great tit populations and one blue tit Cyanistes caeruleus population. We detected survival benefits (i.e. increased survival) of pair fidelity in all three populations. These were similar in both great tit populations, but higher for male great tits than for male blue tits. We found that age‐dependence in the rate of pair fidelity was shared between different populations and species, but did not detect any influence of current pair status on future pair status. Our study highlights the importance of considering survival when studying the fitness benefits of pair fidelity. Some of the differences in pair fidelity rates and survival benefits of pair fidelity are likely the result of long‐term and short‐term demographic and environmental factors in the population. We advocate the use of the MECMR framework used here for further exploration of these differences.  相似文献   

8.
Evolutionary responses to selection can be complicated when there is substantial nonadditivity, which limits our ability to extrapolate from simple models of selection to population differentiation and speciation. Studies of Drosophila melanogaster indicate that lifespan and the rate of senescence are influenced by many genes that have environment- and sex-specific effects. These studies also demonstrate that interactions among alleles (dominance) and loci (epistasis) are common, with the degree of interaction differing between the sexes and among environments. However, little is known about the genetic architecture of lifespan or mortality rates for organisms other than D. melanogaster. We studied genetic architecture of differences in lifespan and shapes of mortality curves between two populations of the seed beetle, Callosobruchus maculatus (South India and Burkina Faso populations). These two populations differ in various traits (such as body size and adult lifespan) that have likely evolved via host-specific selection. We found that the genetic architecture of lifespan differences between populations differs substantially between males and females; there was a large maternal effect on male lifespan (but not on female lifespan), and substantial dominance of long-life alleles in females (but not males). The large maternal effect in males was genetically based (there was no significant cytoplasmic effect) likely due to population differences in maternal effects genes that influence lifespan of progeny. Rearing host did not affect the genetic architecture of lifespan, and there was no evidence that genes on the Y-chromosome influence the population differences in lifespan. Epistatic interactions among loci were detectable for the mortality rate of both males and females, but were detectable for lifespan only after controlling for body size variation among lines. The detection of epistasis, dominance, and sex-specific genetic effects on C. maculatus lifespan is consistent with results from line cross and quantitative trait locus studies of D. melanogaster.  相似文献   

9.
In comparison with most animal behaviours, circadian rhythms have a well-characterized molecular genetic basis. Detailed studies of circadian clock genes in 'model' organisms provide a foundation for interpreting the functional and evolutionary significance of polymorphic circadian clock genes found within free-living animal populations. Here, we describe allelic variation in a region of the avian Clock orthologue which encodes a functionally significant polyglutamine repeat (ClkpolyQcds), within free-living populations of two passerine birds, the migratory bluethroat (Luscinia svecica) and the predominantly nonmigratory blue tit (Cyanistes caeruleus). Multiple ClkpolyQcds alleles were found within populations of both species (bluethroat: 12 populations, 7 alleles; blue tit: 14 populations, 9 alleles). Some populations of both species were differentiated at the ClkpolyQcds locus as measured by F(ST) and R(ST) values. Among the blue tit, but not bluethroat populations, we found evidence of latitudinal clines in (i) mean ClkpolyQcds repeat length, and (ii) the proportions of three ClkpolyQcds genotype groupings. Parallel analyses of microsatellite allele frequencies, which are considered to reflect selectively neutral processes, indicate that interpopulation allele frequency variation at the ClkpolyQcds and microsatellite loci does not reflect the same underlying demographic processes. The possibility that the observed interpopulation ClkpolyQcds allele frequency variation is, at least in part, maintained by selection for microevolutionary adaptation to photoperiodic parameters correlated with latitude warrants further study.  相似文献   

10.
We tested the hypothesis that density‐dependent competition influences the evolution of offspring size. We studied two populations of the least killifish (Heterandria formosa) that differ dramatically in population density; these populations are genetically differentiated for offspring size, and females from both populations produce larger offspring when they experience higher social densities. To look at the influences of population of origin and relative body size on competitive ability, we held females from the high‐density population at two different densities to create large and small offspring with the same genetic background. We measured the competitive ability of those offspring in mesocosms that contained either pure or mixed population treatments at either high or low density. High density increased competition, which was most evident in greatly reduced individual growth rates. Larger offspring from the high‐density population significantly delayed the onset of maturity of fish from the low‐density population. From our results, we infer that competitive conditions in nature have contributed to the evolution of genetically based interpopulation differences in offspring size as well as plasticity in offspring size in response to conspecific density.  相似文献   

11.
The development of molecular genetic screening techniques for avian blood parasites has revealed many novel aspects of their ecology, including greatly elevated diversity and complex host-parasite relationships. Many previous studies of malaria in birds have treated single study populations as spatially homogeneous with respect to the likelihood of transmission of malaria to hosts, and we have very little idea whether any spatial heterogeneity influences different malaria lineages similarly. Here, we report an analysis of variation in the prevalence and cytochrome b lineage distribution of avian malaria infection with respect to environmental and host factors, and their interactions, in a single blue tit (Cyanistes caeruleus) population. Of 11 Plasmodium and Haemoproteus cytochrome b lineages found in 997 breeding individuals, the three most numerous (pSGS1, pTURDUS1 and pBT7) were considered separately, in addition to analyses of all avian malaria lineages pooled. Our analyses revealed marked spatial differences in the prevalence and distribution of these lineages, with local prevalence of malaria within the population ranging from over 60% to less than 10%. In addition, we found several more complex patterns of prevalence with respect to local landscape features, host state, parasite genotype, and their interactions. We discuss the implications of such heterogeneity in parasite infection at a local scale for the study of the ecology and evolution of infectious diseases in natural populations. The increased resolution afforded by the combination of molecular genetic and geographical information systems (GIS) tools has the potential to provide many insights into the epidemiology, evolution and ecology of these parasites in the future.  相似文献   

12.
Species may differ in the relationship between the numbers of breeding pairs present and woodland area, because the proportion of a wood that forms suitable habitat will vary with woodland size. In this paper, we examine the pattern of variation in abundance with woodland area for eight breeding bird species, and also show how this pattern varied between years. During 1990-1997, we made annual censuses of 53–160 woods, of up to 10 ha in size, and fitted a power function to describe the relationships between numbers of breeding pairs and woodland area. Seven of the eight species, blackbird Turdus merula , dunnock Prunella modularis , wren Troglodytes troglodytes , great tit Parus major , chaffinch Fringilla coelebs , robin Erithacus rubecula and blue tit Parus caeruleus showed a pattern of proportionally higher numbers in smaller woods. Only long-tailed tit Aegithalos caudatus occurred in proportionally higher numbers in larger woods. Blackbird and dunnock showed a trend towards lower numbers in large woods during years with low regional population levels; for these species large woods may provide sub-optimal habitat. Great tit, blue tit, chaffinch and robin showed the opposite trend, towards lower numbers in small woods during years with low regional population levels; for these species small woods may provide sub-optimal habitat. Wren and long-tailed tit, which also showed large annual population fluctuations, showed no change in distribution with regional population level. In great tit and chaffinch, the distribution of pairs in any one year may have been influenced by site fidelity producing a lag in the response associated with regional population levels.  相似文献   

13.
Offspring body mass and hatching date have been proposed as useful correlates of post-fledging survival and recruitment probability in studies of avian populations. However, these links may be mediated by underlying physiological variables which are frequently not reported. One of these is nestling immune function, which can be measured with several field-friendly protocols like the phytohemagglutinin (PHA) inoculation assay used to estimate cell-mediated immune response (CMI). Here we show in a population of pied flycatchers Ficedula hypoleuca subjected to a long-term study in central Spain that nestling CMI as measured with PHA is dependent on dose injected, body mass, hatching date and maternal moult state. Nestlings recruited during the first two or three years after hatching had a higher CMI but did not differ in mass or hatching date with respect to non-recruited nestlings. Nestling immunocompetence as measured with the PHA assay is a better predictor of local recruitment probability than mass or hatching date in our study population, and should be considered in future studies of determinants of offspring survival chances and fitness in avian populations.  相似文献   

14.
Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long‐standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity–fitness correlations.  相似文献   

15.
Timing of spring migration and breeding and their interaction with climate change has been widely studied in recent years, but the possible changes in timing of autumn migration have gained less attention. This work focuses on autumn migration and provides the first multi‐species individual‐based study of how hatching date affects the autumn migration date and migration age by using nestling ring data and re‐trappings of the same individuals during the autumn migration at the Hanko Bird Observatory, Finland. We studied three potentially multibrooded passerines (great tit, blue tit and coal tit) and two single‐brooded birds of prey (goshawk, sparrowhawk), all partially migratory short‐distance migrants. Individuals from late broods migrated at a younger age in all tit species and also in hawks the late hatched individuals tended to migrate at a younger age than the early‐hatched individuals. Late‐hatched individuals migrated later than early‐hatched individuals in blue and coal tits, where the latest hatchers represented second brood individuals. Based on our results, the time from hatching to autumn migration is not constant even among individuals of the same population. Our study indicates that climate warming induced advancement of avian breeding may cause changes in the timing of autumn migration through the frequency of second broods.  相似文献   

16.
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to 5 years. We then compared adult phenotypes between the two populations, as well as trait‐specific Qst and Fst. Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. QstFst comparisons revealed that the trait divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a QstFst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits.  相似文献   

17.
The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary global vector for dengue virus (DENV), yet considerable genetic variation exists among populations in terms of its competence to vector DENV. Variability in adult body size has also been observed among various mosquito populations and several studies have reported a relationship between body size and arbovirus dissemination, although most of these relied on artificially derived variation in body size. Here we examine the relationship between body size and disseminated DENV infection among 10 Ae. aegypti populations reared under optimum laboratory conditions. Body size variability was inferred from wing length measurements and DENV competence was evaluated as the proportion of individuals with disseminated infections following exposure to the dengue-2 JAM1409 strain. There were significant differences in mean wing lengths among populations (anova, F(9,22)= 7.10, P < 0.0001), ranging from 2.16 mm (Bangkok population) to 2.79 mm (MOYO-S [susceptible] population). We also observed significant differences among some populations in mean DENV infection rates (Waller-Duncan K-ratio t-test), ranging from 19.54% (MOYO-R [refractory] population) to 56.60% (MOYO-S population). However, we did not observe evidence for significant interactions between body size and DENV dissemination. We suggest that either the two traits are genetically independent or that our ability to detect interactions between them was limited by their respective inheritances as quantitative traits.  相似文献   

18.
Social dominance influences the outcome of competitive interactionsover limited resources, and may hence be important for individualfitness. Theory thus predicts that its heritability will below and that non-genetic determinants of dominance should prevail.In this field experiment we reciprocally cross-fostered greattits (Parus major) to blue tits (Parus caeruleus) to investigatethe impact of early social experience on dominance status incompetition over food during winter. Controlling for potentialeffects of age, size, sex and site-related dominance, we showthat cross-fostered birds of both species were subdominant toconspecific immigrants, while controls originating from unmanipulatedbroods were dominant to conspecific immigrants. Furthermore,blue tits reared by blue tit parents but with at least one greattit broodmate had lower dominance status relative to conspecificimmigrants than did controls. Although great tits generallydominated blue tits, cross-fostered birds of both species initiatedmarginally more fights against the other species than did theirrespective controls, suggesting faulty species recognition.Since both social parents and broodmates strongly influencethe dominance behavior of offspring later in life, we concludethat social conditions experienced at an early age are crucialfor the determination of subsequent social dominance.  相似文献   

19.
We investigated the possible causes of the evolution of sexual size and shape dimorphism in the great tit (Parus major) by using two different approaches. First, we used the equilibrium approach, i.e. analysing current selection to see whether it was possible to find directional selection in the direction of the dimorphism, or stabilising selection maintaining dimorphism at its current level. Second, we used the historical approach, i.e. putting the degree of dimorphism in a phylogenetic perspective to analyse what kind of changes (if any) have occurred. This was carried out in the following way: (i) we described the level of sexual dimorphism in a population of Swedish great tits by means of path model. (ii) We used the path model design to analyse survival and reproductive selection in this population. (iii) We compared the level of dimorphism in relation to size in the great tit with that of the closest congener, the blue tit P. caeruleus. (iv) We compared the amount of interspecific morphological variation with that which would be expected under a drift model. We found no evidence of either stabilising or directional survival or reproductive selection. Size and shape variation in the great tit seemed unrelated to fitness in adults. Dimorphism was somewhat greater in the great tit compared to the blue tit, but only with an amount predictable by its larger size. In terms of phenotypic standard deviations, the great tit was not more dimorphic than the blue tit, although it was larger. The amount of interspecific variance with regard to size was lower or equal to that expected by the drift model, showing that long-term directional selection for an increase in size and dimorphism is improbable. These results agree with recent theoretical findings that size and dimorphism should be related and that strong conservatism with regard to dimorphism is to be expected. They also agree with the view that in equilibrium populations, fitness components (if there are many of them) should appear neutral with regard to total fitness.  相似文献   

20.
One of many uncertainties concerning the epidemiology of avian malaria in wild bird populations is the age at first infection. While nestlings, being naked and presumably immunologically na?ve would seem a likely stage of first infection, most age-stratified prevalence studies have not examined the nestling cohort, whereas those that have use relatively insensitive blood smear examination to diagnose infection. In the study presented here, we used sensitive nested polymerase chain reaction methods to screen blood samples from 195, 14-day-old blue tit (Cyanistes caeruleus) nestlings for avian malaria parasites (species of Plasmodium and Haemoproteus). Adults in this population are commonly infected with Plasmodium spp. (prevalence c. 30%). No avian malaria infections were found in nestlings, but a single positive identification of the related hematozoan parasite, Leucocytozoon sp., was made. Our results suggest either that the nestlings were infected but the disease had not yet reached patency, or that young birds in the nest are not bitten by the insect vectors of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号