首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Pre-mRNA splicing is catalyzed by the spliceosome, a macromolecular machine dedicated to intron removal and exon ligation. Despite an abundance of in vitro information and a small number of in vivo studies, the pathway of yeast (Saccharomyces cerevisiae) in vivo spliceosome assembly remains uncertain. To address this situation, we combined in vivo depletions of U1, U2, or U5 snRNAs with chromatin immunoprecipitation (ChIP) analysis of other splicing snRNPs along an intron-containing gene. The data indicate that snRNP recruitment to nascent pre-mRNA predominantly proceeds via the canonical three-step assembly pathway: first U1, then U2, and finally the U4/U6*U5 tri-snRNP. Tandem affinity purification (TAP) using a U2 snRNP-tagged protein allowed the characterization of in vivo assembled higher-order splicing complexes. Consistent with an independent snRNP assembly pathway, we observed high levels of U1-U2 prespliceosomes under U5-depletion conditions, and we observed significant levels of a U2/U5/U6/Prp19-complex mature splicing complex under wild-type conditions. These complexes have implications for the steady-state distribution of snRNPs within nuclei and also reinforce the stepwise recruitment of U1, U2, and the tri-snRNP during in vivo spliceosome assembly.  相似文献   

3.
4.
Spliceosome assembly involves the sequential recruitment of small nuclear ribonucleoproteins (snRNPs) onto a pre-mRNA substrate. Although several non-snRNP proteins function during the binding of U1 and U2 snRNPs, little is known about the subsequent binding of the U4/U5/U6 tri-snRNP. A recent proteomic analysis of the human spliceosome identified SPF30 (Neubauer, G., King, A., Rappsilber, J., Calvio, C., Watson, M., Ajuh, P., Sleeman, J., Lamond, A., and Mann, M. (1998) Nat. Genet. 20, 46-50), a homolog of the survival of motor neurons (SMN) protein, as a spliceosome factor. We show here that SPF30 is a nuclear protein that associates with both U4/U5/U6 and U2 snRNP components. In the absence of SPF30, the preformed tri-snRNP fails to assemble into the spliceosome. Mass spectrometric analysis shows that a recombinant glutathione S-transferase-SPF30 fusion protein associates with complexes containing core Sm and U4/U5/U6 tri-snRNP proteins when added to HeLa nuclear extract, most strongly to U4/U6-90. The data indicate that SPF30 is an essential human splicing factor that may act to dock the U4/U5/U6 tri-snRNP to the A complex during spliceosome assembly or, alternatively, may act as a late assembly factor in both the tri-snRNP and the A-complex.  相似文献   

5.
The PRP31 gene encodes a factor essential for the splicing of pre-mRNA in Saccharomyces cerevisiae. Cell extracts derived from a prp31-1 strain fail to form mature spliceosomes upon heat inactivation, although commitment complexes and prespliceosome complexes are detected under these conditions. Coimmunoprecipitation experiments indicate that Prp31p is associated both with the U4/U6 x U5 tri-snRNP and, independently, with the prespliceosome prior to assembly of the tri-snRNP into the splicing complex. Nondenaturing gel electrophoresis and glycerol gradient analyses demonstrate that while Prp31p may play a role in maintaining the assembly or stability of tri-snRNPs, functional protein is not essential for the formation of U4/U6 or U4/U6 x U5 snRNPs. These results suggest that Prp31p is involved in recruiting the U4/U6 x U5 tri-snRNP to prespliceosome complexes or in stabilizing these interactions.  相似文献   

6.
In each round of nuclear pre-mRNA splicing, the U4/U6*U5 tri-snRNP must be assembled from U4/U6 and U5 snRNPs, a reaction that is at present poorly understood. We have characterized a 61 kDa protein (61K) found in human U4/U6*U5 tri-snRNPs, which is homologous to yeast Prp31p, and show that it is required for this step. Immunodepletion of protein 61K from HeLa nuclear extracts inhibits tri-snRNP formation and subsequent spliceosome assembly and pre-mRNA splicing. Significantly, complementation with recombinant 61K protein restores each of these steps. Protein 61K is operationally defined as U4/U6 snRNP-specific as it remains bound to this particle at salt concentrations where the tri-snRNP dissociates. However, as shown by two-hybrid analysis and biochemical assays, protein 61K also interacts specifically with the U5 snRNP-associated 102K protein, indicating that it physically tethers U4/U6 to the U5 snRNP to yield the tri-snRNP. Interestingly, protein 61K is encoded by a gene (PRPF31) that has been shown to be linked to autosomal dominant retinitis pigmentosa. Thus, our studies suggest that disruptions in tri-snRNP formation and function resulting from mutations in the 61K protein may contribute to the manifestation of this disease.  相似文献   

7.
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.  相似文献   

8.
We have studied the assembly, composition and structure of splicing complexes using biotin-avidin affinity chromatography and RNase protection assays. We find that U1, U2, U4, U5 and U6 snRNPs associate with the pre-mRNA and are in the mature, functional complex. Association of U1 snRNP with the pre-mRNA is rapid and ATP independent; binding of all other snRNPs occurs subsequently and is ATP dependent. Efficient binding of U1 and U2 snRNPs requires a 5' splice site or a 3' splice site/branch point region, respectively. Both sequence elements are required for efficient U4, U5 and U6 snRNP binding. Mutant RNA substrates containing only a 5' splice site or a 3' splice site/branch point region are assembled into 'partial' splicing complexes, which contain a subset of these five snRNPs. RNase protection experiments indicate that in contrast to U1 and U2 snRNPs, U4, U5 and U6 snRNPs do not contact the pre-mRNA. Based upon the time course of snRNP binding and the composition of sucrose gradient fractionated splicing complexes we suggest an assembly pathway proceeding from a 20S (U1 snRNP only) through a 40S (U1 and U2 snRNPs) to the functional 60S splicing complex (U1, U2, U4, U5 and U6 snRNPs).  相似文献   

9.
10.
The process of mRNA splicing is sensitive to in vivo thermal inactivation, but can be protected by pretreatment of cells under conditions that induce heat-shock proteins (Hsps). This latter phenomenon is known as "splicing thermotolerance". In this article we demonstrate that the small nuclear ribonucleoprotein particles (snRNPs) are in vivo targets of thermal damage within the splicing apparatus in heat-shocked yeast cells. Following a heat shock, levels of the tri-snRNP (U4/U6.U5), free U6 snRNP, and a pre-U6 snRNP complex are dramatically reduced. In addition, we observe multiple alterations in U1, U2, U5, and U4/U6 snRNP profiles and the accumulation of precursor forms of U4- and U6-containing snRNPs. Reassembly of snRNPs following a heat shock is correlated with the recovery of mRNA splicing and requires both Hsp104 and the Ssa Hsp70 family of proteins. Furthermore, we correlate splicing thermotolerance with the protection of a subset of snRNPs by Ssa proteins but not Hsp104, and show that Hsp70 directly associates with U4- and U6-containing snRNPs in splicing thermotolerant cells. In addition, our results show that Hsp70 plays a role in snRNP assembly under normal physiological conditions.  相似文献   

11.
Spliceosome assembly is a dynamic process involving the sequential recruitment and rearrangement of small nuclear ribonucleoproteins (snRNPs) on a pre-mRNA substrate. Here we identify several spliceosome protein interactions with different domains of human splicing factor SPF30 that have the potential to mediate the addition of the tri-snRNP to the prespliceosome. In particular, we show that the C-terminal tails of SmD1, SmD3, and the protein Lsm4 interact with the central Tudor domain of SPF30. We identify a novel interaction between the N-terminal domain of SPF30 and U2AF35, a prespliceosome protein that has a role in recognizing the 3' splice site and recruiting U2 snRNP. We also show that the C terminus of SPF30 interacts with a middle domain of hPrp3, a component of U4/U6 di-snRNP and the tri-snRNP. Importantly, we show that the U2AF35 and hPrp3 interactions with SPF30 can occur simultaneously, thereby potentially linking 3' splice site recognition with tri-snRNP addition. Finally, we note that SPF30 and its partner-interacting domains are not conserved in yeast, suggesting this interaction network may play an important role in the complex splicing observed in higher eukaryotes.  相似文献   

12.
Cajal bodies (CBs) are subnuclear organelles of animal and plant cells. A role of CBs in the assembly and maturation of small nuclear ribonucleoproteins (snRNP) has been proposed but is poorly understood. Here we have addressed the question where U4/U6.U5 tri-snRNP assembly occurs in the nucleus. The U4/U6.U5 tri-snRNP is a central unit of the spliceosome and must be re-formed from its components after each round of splicing. By combining RNAi and biochemical methods, we demonstrate that, after knockdown of the U4/U6-specific hPrp31 (61 K) or the U5-specific hPrp6 (102 K) protein in HeLa cells, tri-snRNP formation is inhibited and stable U5 mono-snRNPs and U4/U6 di-snRNPs containing U4/U6 proteins and the U4/U6 recycling factor p110 accumulate. Thus, hPrp31 and hPrp6 form an essential connection between the U4/U6 and U5 snRNPs in vivo. Using fluorescence microscopy, we show that, in the absence of either hPrp31 or hPrp6, U4/U6 di-snRNPs as well as p110 accumulate in Cajal bodies. In contrast, U5 snRNPs largely remain in nucleoplasmic speckles. Our data support the idea that CBs may play a role in tri-snRNP recycling.  相似文献   

13.
Splicing of pre-messenger RNAs into functional messages requires a concerted assembly of proteins and small RNAs that identify the splice junctions and facilitate cleavage of exon-intron boundaries and ligation of exons. One of the key steps in the splicing reaction is the recruitment of a tri-snRNP harboring the U5/U4/U6 snRNPs. The U5 snRNP is also required for both steps of splicing and exon-exon joining. One of the key components of the tri-snRNP is the U5 200kd helicase. The human U5-200kD gene isolated from Hela cells encodes a 200 kDa protein with putative RNA helicase function. Surprisingly, little is known about the functional role of this protein in humans. Therefore, we have investigated the role of the U5-200kD RNA helicase in mammalian cell culture. We created and expressed a dominant negative domain I mutant of the RNA helicase in HEK293 cells and used RNAi to downregulate expression of the endogenous protein. Transient and stable expression of the domain I mutant U5-200kD protein using an ecdysone-inducible system and transient expression of an anti-U5-200kD short hairpin RNA (shRNA) resulted in differential splicing and growth defects in the 293/EcR cells. Cell cycle analysis of the dominant negative clones revealed delayed exit from the G2/M phase of the cell cycle due to a mild splicing defect. In contrast to the domain I dominant negative mutant expressing cells, transient expression of an anti-U5-200kD shRNA resulted in a pronounced S phase arrest and a minute splicing defect. Collectively, this work demonstrates for the first time establishment of differential human cell culture splicing and cell cycle defect models due to perturbed levels of an essential core splicing factor.  相似文献   

14.
The Cajal body (CB) is a nuclear structure closely associated with import and biogenesis of small nuclear ribonucleoprotein particles (snRNPs). Here, we tested whether CBs also contain mature snRNPs and whether CB integrity depends on the ongoing snRNP splicing cycle. Sm proteins tagged with photoactivatable and color-maturing variants of fluorescent proteins were used to monitor snRNP behavior in living cells over time; mature snRNPs accumulated in CBs, traveled from one CB to another, and they were not preferentially replaced by newly imported snRNPs. To test whether CB integrity depends on the snRNP splicing cycle, two human orthologues of yeast proteins involved in distinct steps in spliceosome disassembly after splicing, hPrp22 and hNtr1, were depleted by small interfering RNA treatment. Surprisingly, depletion of either protein led to the accumulation of U4/U6 snRNPs in CBs, suggesting that reassembly of the U4/U6.U5 tri-snRNP was delayed. Accordingly, a relative decrease in U5 snRNPs compared with U4/U6 snRNPs was observed in CBs, as well as in nuclear extracts of treated cells. Together, the data show that particular phases of the spliceosome cycle are compartmentalized in living cells, with reassembly of the tri-snRNP occurring in CBs.  相似文献   

15.
16.
The U4/U6·U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) is an essential pre-mRNA splicing factor, which is assembled in a stepwise manner before each round of splicing. It was previously shown that the tri-snRNP is formed in Cajal bodies (CBs), but little is known about the dynamics of this process. Here we created a mathematical model of tri-snRNP assembly in CBs and used it to fit kinetics of individual snRNPs monitored by fluorescence recovery after photobleaching. A global fitting of all kinetic data determined key reaction constants of tri-snRNP assembly. Our model predicts that the rates of di-snRNP and tri-snRNP assemblies are similar and that ∼230 tri-snRNPs are assembled in one CB per minute. Our analysis further indicates that tri-snRNP assembly is approximately 10-fold faster in CBs than in the surrounding nucleoplasm, which is fully consistent with the importance of CBs for snRNP formation in rapidly developing biological systems. Finally, the model predicted binding between SART3 and a CB component. We tested this prediction by Förster resonance energy transfer and revealed an interaction between SART3 and coilin in CBs.  相似文献   

17.
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing   总被引:2,自引:0,他引:2  
Das R  Yu J  Zhang Z  Gygi MP  Krainer AR  Gygi SP  Reed R 《Molecular cell》2007,26(6):867-881
  相似文献   

18.
Snu114 is a U5 snRNP protein essential for pre-mRNA splicing. Based on its homology with the ribosomal translocase EF-G, it is thought that GTP hydrolysis by Snu114 induces conformational rearrangements in the spliceosome. We recently identified allele-specific genetic interactions between SNU114 and genes encoding three other U5 snRNP components, Prp8 and two RNA-dependent ATPases, Prp28 and Brr2, required for destabilization of U1 and U4 snRNPs prior to catalysis. To shed more light onto the function of Snu114, we have now directly analyzed snRNP and spliceosome assembly in SNU114 mutant extracts. The Snu114-60 C-terminal truncation mutant, which is synthetically lethal with the ATPase mutants prp28-1 and brr2-1, assembles spliceosomes but subsequently blocks U4 snRNP release. Conversely, mutants in the GTPase domain fail to assemble U5 snRNPs. These mutations prevent the interaction of Snu114 with Prp8 as well as with U5 snRNA. Since Prp8 is thought to regulate the activity of the DEAD-box ATPases, this strategy of snRNP assembly could ensure that Prp8 activity is itself regulated by a GTP-dependent mechanism.  相似文献   

19.
The association of the U4/U6.U5 tri-snRNP with pre-spliceosomes is a poorly understood step in the spliceosome assembly pathway. We have identified two human tri-snRNP proteins (of 65 and 110 kDa) that play an essential role in this process. Characterization by cDNA cloning of the 65 and 110 kDa proteins revealed that they are likely orthologues of the yeast spliceosomal proteins Sad1p and Snu66p, respectively. Immunodepletion of either protein from the HeLa cell nuclear extracts inhibited pre-mRNA splicing due to a block in the formation of mature spliceosomes, but had no effect on the integrity of the U4/U6.U5 tri-snRNP. Spliceosome assembly and splicing catalysis could be restored to the respective depleted extract by the addition of recombinant 65 or 110 kDa protein. Our data demonstrate that both proteins are essential for the recruitment of the tri-snRNP to the pre-spliceosome but not for the maintenance of the tri-snRNP stability. Moreover, since both proteins contain an N-terminal RS domain, they could mediate the association of the tri-snRNP with pre-spliceosomes by interaction with members of the SR protein family.  相似文献   

20.
Two different models currently exist for the assembly pathway of the spliceosome, namely, the traditional model, in which spliceosomal snRNPs associate in a stepwise, ordered manner with the pre-mRNA, and the holospliceosome model, in which all spliceosomal snRNPs preassemble into a penta-snRNP complex. Here we have tested whether the spliceosomal A complex, which contains solely U1 and U2 snRNPs bound to pre-mRNA, is a functional, bona fide assembly intermediate. Significantly, A complexes affinity-purified from nuclear extract depleted of U4/U6 snRNPs (and thus unable to form a penta-snRNP) supported pre-mRNA splicing in nuclear extract depleted of U2 snRNPs, whereas naked pre-mRNA did not. Mixing experiments with purified A complexes and naked pre-mRNA additionally confirmed that under these conditions, A complexes do not form de novo. Thus, our studies demonstrate that holospliceosome formation is not a prerequisite for generating catalytically active spliceosomes and that, at least in vitro, the U1 and U2 snRNPs can functionally associate with the pre-mRNA, prior to and independent of the tri-snRNP. The ability to isolate functional spliceosomal A complexes paves the way to study in detail subsequent spliceosome assembly steps using purified components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号