首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电压门控钙通道受钙依赖性易化和失活两种相互对立的反馈机制调节.不同浓度的钙离子,通过作为钙感受器的钙调蛋白的介导,主要与钙通道α1亚基羧基端的多个不连续片段发生复杂的相互作用,分别引发钙依赖性易化和失活.钙/钙调蛋白依赖性蛋白激酶Ⅱ及其它钙结合蛋白等也参与此调节过程.新近研究表明,钙通道的钙依赖性调节机制失衡与心律失常等的发病机制密切相关.  相似文献   

2.
3.
4.
Ca2+-dependent potentiation of muscarinic receptor-mediated Ca2+ elevation   总被引:1,自引:0,他引:1  
Muscarinic receptor-mediated increases in Ca(2+) in SH-SY5Y neuroblastoma cells consist of an initial fast and transient phase followed by a sustained phase. Activation of voltage-gated Ca(2+) channels prior to muscarinic stimulation resulted in a several-fold potentiation of the fast phase. Unlike the muscarinic response under control conditions, this potentiated elevation of intracellular Ca(2+) was to a large extent dependent on extracellular Ca(2+). In potentiated cells, muscarinic stimulation also activated a rapid Mn(2+) entry. By using known organic and inorganic blockers of cation channels, this influx pathway was easily separated from the known Ca(2+) influx pathways, the store-operated pathway and the voltage-gated Ca(2+) channels. In addition to the Ca(2+) influx, both IP(3) production and Ca(2+) release were also enhanced during the potentiated response. The results suggest that a small increase in intracellular Ca(2+) amplifies the muscarinic Ca(2+) response at several stages, most notably by unravelling an apparently novel receptor-activated influx pathway.  相似文献   

5.
Transformation in bacteria is the uptake and incorporation of exogenous DNA into a cell's genome. Several species transform naturally during a regulated state defined as competence. Genetic elements in Streptococcus pneumoniae induced during transformation were identified by combining a genetic screen with genomic analysis. Six loci were discovered that composed a competence-induced regulon. These loci shared a consensus promoter sequence and encoded proteins, some of which were similar to proteins involved in DNA processing during transformation in other bacteria. Each locus was induced during competence and essential for genetic transformation.  相似文献   

6.
The treatment of rat thymocytes with A23187 + Ca2+, ascorbate-phenazine methosulphate or propranolol induced quinine-sensitive fluxes of K+ (Rb+) suggesting the presence in the cell membrane of Ca2+-dependent K+ channels. Concanavalin A induced K+ channel activation only at very high doses (13 micrograms/ml). Neither quinine nor the increase of the K+ concentration in the medium to 30 mM prevented the stimulation of amino acid transport induced by concanavalin A, suggesting that the Ca2+-dependent K+ channel is not involved in the early phenomena of lymphocyte activation.  相似文献   

7.
Interaction of Cu(II) and Gly-His-Lys, a growth-modulating tripeptide from plasma, was investigated by 13C- and 1H-n.m.r. and e.p.r. spectroscopy. The n.m.r. line-broadening was interpreted in terms of major and minor species formed as a function of pH. The results indicate that the n.m.r. line-broadening is due to the presence of minor species in rapid exchange and not due to the major species in solution, which has a large tau M. It is concluded that the technique of 13C- and 1H-n.m.r. line broadening, caused by paramagnetic Cu(II) ion, should be undertaken with caution, since the method may not be useful for obtaining structural information on the major species. The e.p.r. spectra over a wide pH range are almost entirely due to similarly co-ordinating species. Starting at pH 5.5, the narrowest absorption near 340 mT shows superhyperfine structure, which comes out sharply in the pH region 6.0-9.6. The spectra in this pH range showed the seven lines of nitrogen superhyperfine splitting, indicating clearly the co-ordination of three nitrogen atoms to Cu(II). The e.p.r. parameters in the medium pH range, A parallel = 19.5 mT and g parallel = 2.21, fit well with the contention that Cu(II) is ligated to Gly-His-Lys through one oxygen atom and three nitrogen atoms in a square-planar configuration.  相似文献   

8.
Fortilin, a 172-amino-acid polypeptide present both in the cytosol and nucleus, possesses potent anti-apoptotic activity. Although fortilin is known to bind Ca2+, the biochemistry and biological significance of such an interaction remains unknown. In the present study we report that fortilin must bind Ca2+ in order to protect cells against Ca2+-dependent apoptosis. Using a standard Ca2+-overlay assay, we first validated that full-length fortilin binds Ca2+ and showed that the N-terminus (amino acids 1-72) is required for its Ca2+-binding. We then used flow dialysis and CD spectropolarimetry assays to demonstrate that fortilin binds Ca2+ with a dissociation constant (Kd) of approx. 10 mM and that the binding of fortilin to Ca2+ induces a significant change in the secondary structure of fortilin. In order to evaluate the impact of the binding of fortilin to Ca2+ in vivo, we measured intracellular Ca2+ levels upon thapsigargin challenge and found that the lack of fortilin in the cell results in the exaggerated elevation of intracellular Ca2+ in the cell. We then tested various point mutants of fortilin for their Ca2+ binding and identified fortilin(E58A/E60A) to be a double-point mutant of fortilin lacking the ability of Ca2+-binding. We then found that wild-type fortilin, but not fortilin(E58A/E60A), protected cells against thapsigargin-induced apoptosis, suggesting that the binding of fortilin to Ca2+ is required for fortilin to protect cells against Ca2+-dependent apoptosis. Together, these results suggest that fortilin is an intracellular Ca2+ scavenger, protecting cells against Ca2+-dependent apoptosis by binding and sequestering Ca2+ from the downstream Ca2+-dependent apoptotic pathways.  相似文献   

9.
Characterization of the putative Ca2+-gated Ca2+ channel of sarcoplasmic reticulum, which is thought to mediate Ca2+-induced Ca2+ release, was carried out in order to elucidate the mechanism of Ca2+-induced Ca2+ release. Heavy and light fractions of fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were loaded passively with Ca2+, and then passive Ca2+ efflux was measured under various conditions. The fast phase of the Ca2+ efflux depended on the extravesicular free Ca2+ concentration and was assigned to the Ca2+ efflux through the Ca2+-gated Ca2+ channel. Vesicles with the Ca2+-gated Ca2+ channels comprised about 85% of the heavy fraction and about 40% of the light fraction. The amount of Ca2+ loaded in FSR was found to be much larger than that estimated on the basis of vesicle inner volume and the equilibration of intravesicular with extravesicular Ca2+, indicating Ca2+ binding inside FSR. Taking this fact into account, the Ca2+ efflux curve was quantitatively analyzed and the dependence of the Ca2+ efflux rate constant on the extravesicular free Ca2+ concentration was determined. The Ca2+ efflux was maximal, with the rate constant of 0.75 s-1, when the extravesicular free Ca2+ was at 3 microM. Caffeine increased the affinity for Ca2+ of Ca2+-binding sites for opening the channel with only a slight change in the maximum rate of Ca2+ efflux. Mg2+ inhibited the Ca2+ binding to the sites for opening the channel while procaine seemed to inhibit the Ca2+ efflux by blocking the ionophore moiety of the channel.  相似文献   

10.
Thorne GD  Ishida Y  Paul RJ 《Cell calcium》2004,36(3-4):201-208
The mechanisms of oxygen sensing in vascular smooth muscle have been studied extensively in a variety of tissue types and the results of these studies indicate that the mechanism of hypoxia-induced vasodilation probably involves several mechanisms that combined to assure the appropriate response. After a short discussion of the regulatory mechanisms for smooth muscle contractility, we present the evidence indicating that hypoxic vasorelaxation involves both Ca2+-dependent and Ca2+-independent mechanisms. More recent experiments using proteomic approaches in organ cultures of porcine coronary artery reveal important changes evoked by hypoxia in both Ca2+-dependent and Ca2+-independent pathways.  相似文献   

11.
The correct spatial and temporal control of Ca2+ signaling is essential for such cellular activities as fertilization, secretion, motility, and cell division. There has been a long-standing interest in the role of caveolae in regulating intracellular Ca2+ concentration. In this review we provide an updated view of how caveolae may regulate both Ca2+ entry into cells and Ca2+-dependent signal transduction  相似文献   

12.
Xiong W  Liu T  Wang Y  Chen X  Sun L  Guo N  Zheng H  Zheng L  Ruat M  Han W  Zhang CX  Zhou Z 《PloS one》2011,6(10):e24573

Aim

Neurotransmitter release is elicited by an elevation of intracellular Ca2+ concentration ([Ca2+]i). The action potential triggers Ca2+ influx through Ca2+ channels which causes local changes of [Ca2+]i for vesicle release. However, any direct role of extracellular Ca2+ (besides Ca2+ influx) on Ca2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis.

Results

Using photolysis of caged Ca2+ and caffeine-induced release of stored Ca2+, we found that extracellular Ca2+ inhibited exocytosis following moderate [Ca2+]i rises (2–3 µM). The IC50 for extracellular Ca2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (∼30%) of extracellular Ca2+ concentration ([Ca2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca2+]o. The calcimimetics Mg2+, Cd2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE.

Conclusion/Significance

As an extension of the classic Ca2+ hypothesis of synaptic release, physiological levels of extracellular Ca2+ play dual roles in evoked exocytosis by providing a source of Ca2+ influx, and by directly regulating quantal size and release probability in neuronal cells.  相似文献   

13.
14.
We previously reported (J. Biol. Chem. (1986) 261, 6352-6465) that the photoaffinity ligand for the Ah receptor, [125I]-2-azido-3-iodo-7,8-dibromodibenzo-p-dioxin, upon incubation with the liver cytosol fraction from C57BL/6 mice, labeled in a 1:1 ratio two peptides that had apparent molecular masses of 95 and 70 kDa and similar proteolytic fragmentation patterns. In the cytosolic fraction of Hepa 1 cells, a cloned murine hepatoma cell line, the product of photoaffinity labeling is almost exclusively a 95-kDa peptide which is rapidly hydrolyzed by a Ca2+-dependent proteinase to a 70-kDa peptide as well as other fragments. Thus, the ligand binding unit of the Ah receptor in C57BL/6 mouse liver and Hepa 1 cell is a 95-kDa peptide, and the 70-kDa fragment is a proteolytic artifact. The Ca2+-dependent proteinase which hydrolyzes the 95-kDa peptide has the properties of calpain II: (i) an absolute requirement for Ca2+, with maximal activity at 0.5 to 1.0 mM Ca2+; (ii) a pH optimum of 7.5 to 8.0; (iii) inhibition by EDTA, iodoacetamide, leupeptin and L-trans-epoxysuccinylleucylamido(4-guanidino)butane, but not by soybean trypsin inhibitor, aprotinin, or phenylmethanesufonyl fluoride. Upon chromatographic separation of the liver cytosol of C57BL/6 mice on DEAE-Sephacel, Ca2+-dependent proteinase activity (using casein or the labeled 95-kDa peptide as substrates) elutes with 0.25 M NaCl, and a specific proteinase inhibitor elutes with 0.15 M NaCl. Ca2+-dependent proteinase activity that hydrolyzes the 95-kDa peptide is found in the liver cytosols of several mammalian species.  相似文献   

15.
Ca2 是促发囊泡胞吐的关键调节因子.最近的研究表明,分泌囊泡和通道之间的空间距离调节囊泡分泌的过程和性质.Ca2 通道开口附近形成的Ca2 微区和Ca2 钠区和囊泡快速递质释放有非常紧密的联系.SNARE蛋白和钙离子传感器synaptotagmins等在触发分泌中起调控作用.同时另有一类不依赖于Ca2 的囊泡分泌存在.Latrotoxin和mastoparan等可以激活这一类不依赖于Ca2 的信号通路,从而触发囊泡释放.本文主要从ca2 对囊泡胞吐的调控作用着手,综述了Ca2 依赖和Ca2 不依赖的囊泡分泌过程和可能的调控机制.  相似文献   

16.
Besides the nerve endings, the soma of trigeminal neurons also respond to membrane depolarizations with the release of neurotransmitters and neuromodulators in the extracellular space within the ganglion, a process potentially important for the cross-communication between neighboring sensory neurons. In this study, we addressed the dependence of somatic release on Ca2+ influx in trigeminal neurons and the involvement of the different types of voltage-gated Ca2+ (Cav) channels in the process. Similar to the closely related dorsal root ganglion neurons, we found two kinetically distinct components of somatic release, a faster component stimulated by voltage but independent of the Ca2+ influx, and a slower component triggered by Ca2+ influx. The Ca2+-dependent component was inhibited 80% by ω-conotoxin-MVIIC, an inhibitor of both N- and P/Q-type Cav channels, and 55% by the P/Q-type selective inhibitor ω-agatoxin-IVA. The selective L-type Ca2+ channel inhibitor nimodipine was instead without effect. These results suggest a major involvement of N- and P/Q-, but not L-type Cav channels in the somatic release of trigeminal neurons. Thus antinociceptive Cav channel antagonists acting on the N- and P/Q-type channels may exert their function by also modulating the somatic release and cross-communication between sensory neurons.  相似文献   

17.
The influence of extracellular Ca2+ on hormone-mediated increases of cytosolic free Ca2+ [( Ca2+]i) and phosphorylase activity was studied in isolated hepatocytes. In the presence of 1.3 mM extracellular Ca2+, the stimulation of phosphorylase activity produced by vasopressin or phenylephrine was maintained for 20-30 min. In contrast, the change in [Ca2+]i under these conditions was more transient and declined within 3-4 min to steady state values only 70 +/- 8 nM above the resting [Ca2+]i. Removal of the hormone from its receptor with specific antagonists caused a decline in [Ca2+]i back to the original resting values. Subsequent addition of a second hormone elicited a further Ca2+ transient. If the antagonist was omitted, the second hormone addition did not increase [Ca2+]i indicating that the labile intracellular Ca2+ pool remains depleted during receptor occupation. When extracellular Ca2+ was omitted, both the changes of [Ca2+]i and phosphorylase a caused by vasopressin were transient and returned exactly to resting values within 3-4 min. The subsequent readdition of Ca2+ to these cells produced a further increase of [Ca2+]i and phosphorylase activity which was larger than the changes observed upon Ca2+ addition to untreated cells. This reactivation of phosphorylase showed saturation kinetics with respect to extracellular [Ca2+], was maximally stimulated within 1 min of vasopressin addition and was inhibited by high concentration of diltiazem. We conclude that entry of extracellular Ca2+ into the cell is required in order to obtain a sustained hormonal stimulation of phosphorylase activity and is responsible for the maintenance of a small steady state elevation of [Ca2+]i.  相似文献   

18.
19.
A kinetic model of Ca2+-dependent inactivation (CDI) of L-type Ca2+ channels was developed. The model is based on the hypothesis that postulates the existence of four short-lived modes with lifetimes of a few hundreds of milliseconds. Our findings suggest that the transitions between the modes is primarily determined by the binding of Ca2+ to two intracellular allosteric sites located in different motifs of the CI region, which have greatly differing binding rates for Ca2+ (different k(on)). The slow-binding site is controlled by local Ca2+ near a single open channel that is consistent with the "domain" CDI model, and Ca2+ binding to the fast-binding site(s) depends on Ca2+ arising from distant sources that is consistent with the "shell" CDI model. The model helps to explain numerous experimental findings that are poorly understood so far.  相似文献   

20.
Peterson BZ  DeMaria CD  Adelman JP  Yue DT 《Neuron》1999,22(3):549-558
Elevated intracellular Ca2+ triggers inactivation of L-type calcium channels, providing negative Ca2+ feedback in many cells. Ca2+ binding to the main alpha1c channel subunit has been widely proposed to initiate such Ca2+ -dependent inactivation. Here, we find that overexpression of mutant, Ca2+ -insensitive calmodulin (CaM) ablates Ca2+ -dependent inactivation in a "dominant-negative" manner. This result demonstrates that CaM is the actual Ca2+ sensor for inactivation and suggests that CaM is constitutively tethered to the channel complex. Inactivation is likely to occur via Ca2+ -dependent interaction of tethered CaM with an IQ-like motif on the carboxyl tail of alpha1c. CaM also binds to analogous IQ regions of N-, P/Q-, and R-type calcium channels, suggesting that CaM-mediated effects may be widespread in the calcium channel family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号