首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluspirilene binds with high affinity to a single class of sites in purified porcine cardiac sarcolemmal membrane vesicles at a Kd of 0.6 nM and a Bmax that is in approximately 1:1 stoichiometry with other Ca2+ entry blocker receptors. Fluspirilene binding is modulated by various classes of L-type Ca2+ channel effectors. Metal ion channel inhibitors (e.g. Cd2+) stimulate binding primarily by increasing ligand affinity, whereas channel substrates (e.g. Ca2+) inhibit binding. Dihydropyridine, aralkylamine, and benzothiazepine Ca2+ entry blockers partially inhibit binding with Ki values equivalent to their respective Kd values, indicating close coupling between binding sites for the former agents and the diphenylbutylpiperidine site. All of these agents function as mixed inhibitors and affect both Kd and Bmax of fluspirilene binding. Only other substituted diphenylbutylpiperidines (e.g. pimozide) inhibit binding competitively. Diphenylbutylpiperidines, on the other hand, block nitrendipine, D-600, and diltiazem binding through a noncompetitive mechanism with Ki values much reduced from their measured Kd values, suggesting that coupling between the diphenylbutylpiperidine site and receptors for diverse Ca2+ entry blockers is more indirect. In addition, high affinity sites have been detected for fluspirilene in bovine aortic sarcolemmal vesicles, rat brain synaptic membranes, and GH3 rat anterior pituitary cell plasma membranes. Fluspirilene also effectively blocks Ca2+ flux through L-type Ca2+ channels in GH3 cells. Together, these results suggest that fluspirilene binds with high affinity to a unique fourth site in the Ca2+ entry blocker receptor complex and that substituted diphenylbutylpiperidines represent a new structural class of potent L-type Ca2+ channel inhibitors.  相似文献   

2.
Tetrandrine, a bis-benzylisoquinoline alkaloid derived from the Chinese medicinal herb Stephania tetrandra, is a putative Ca2+ entry blocker whose mechanism of action is unknown. To investigate this mechanism, the effects of tetrandrine were characterized on binding of three chemical classes of Ca2+ entry blockers in cardiac sarcolemmal membrane vesicles. In the range 25-37 degrees C, tetrandrine completely blocks diltiazem binding, partially inhibits D-600 binding, and markedly stimulates nitrendipine binding, with greatest enhancement occurring at 37 degrees C. The potency of tetrandrine is increased 10-fold as temperature is raised from 25 to 37 degrees C. Scatchard analyses indicate that inhibition of diltiazem binding and stimulation of nitrendipine binding result from changes in ligand affinities while inhibition of D-600 binding is due to both an increase in KD and decrease in Bmax of aralkylamine receptors. Ligand dissociation studies reveal that tetrandrine increases D-600 off-rates, decreases nitrendipine off-rates, but has no effect on diltiazem dissociation kinetics. In addition, tetrandrine reversibly blocks inward Ca2+ currents through L-type Ca2+ channels in GH3 anterior pituitary cells. These results indicate that tetrandrine interacts directly at the benzothiazepine-binding site of the Ca2+ entry blocker receptor complex and allosterically modulates ligand binding at other receptors in this complex. These findings suggest that tetrandrine is a structurally unique natural product Ca2+ entry blocker and provide a rationale explanation for the therapeutic effectiveness of this agent.  相似文献   

3.
Three structural classes of commonly used amiloride analogs, molecules derivatized at the terminal guanidino-nitrogen, the five-position pyrazinoyl-nitrogen, or di-substituted at both of these positions, inhibit binding of the L-type Ca2+ channel modulators diltiazem, gallopamil, and nitrendipine to porcine cardiac sarcolemmal membrane vesicles. The rank order of inhibitory potencies among the various derivatives tested is well defined with amiloride being the least potent. Saturation binding studies indicate that inhibition of ligand binding results primarily from effects on Kd. Ligand dissociation measurements suggest that amiloride derivatives do not associate directly at any of the known sites in the Ca2+ entry blocker receptor complex. In addition, these compounds do not compete at the "Ca2+ coordination site" within the channel. However, studies with inorganic and substituted diphenylbutylpiperidine Ca2+ entry blockers reveal that amiloride analogs interact at a site on the channel where metal ions bind and occlude the pore. Photolysis experiments performed with amiloride photoaffinity reagents confirm that a specific interaction occurs between such probes and the channel protein. Upon photolysis, these agents produce concentration- and time-dependent irreversible inactivation of Ca2+ entry blocker binding activities, which can be protected against by either verapamil or diltiazem. 45Ca2+ flux and voltage-clamp experiments performed with GH3 anterior pituitary cells demonstrate that amiloride-like compounds inhibit L-type Ca2+ channels directly. Moreover, these compounds block contraction of isolated vascular tissue in pharmacological assays. Electrophysiological experiments indicate that they also inhibit T-type Ca2+ channels in GH3 cells. Taken together, these results demonstrate unequivocally that amiloride analogs display significant Ca2+ entry blocker activity in both ligand binding and functional assays. This property, therefore, can seriously complicate the interpretation of many in vitro and in vivo studies where amiloride analogs are used to elicit inhibition of other transport systems (e.g. Na-Ca and Na-H exchange).  相似文献   

4.
Stereospecific saturable and reversible binding of d-cis-diltiazem has been demonstrated in cardiac sarcolemmal membrane vesicles. Analysis of binding by either equilibrium or kinetic techniques indicates the presence of a single class of benzothiazepine receptors which bind diltiazem with a KD of 80 nM at 25 degrees C. Benzothiazepine receptors copurify with other sarcolemmal marker activities and exist in a complex with distinct receptors for dihydropyridine and aralkylamine Ca2+ entry blockers in a 1:1:1 stoichiometry. Ligand binding to one receptor of this complex influences binding reactions at the other two sites in a manner that depends on ambient temperature. Binding of either dihydropyridine agonists or antagonists causes partial inhibition of diltiazem binding at 25 degrees C (Bmax effect), while most dihydropyridine antagonists stimulate and agonists inhibit diltiazem binding at 37 degrees C (both are KD effects). This temperature-dependent change in receptor coupling was confirmed by Scatchard analyses and study of diltiazem dissociation kinetics. Verapamil, interacting at the aralkylamine receptor, inhibits diltiazem binding equivalently at 25 and 37 degrees C (KD effects). In addition, both classes of dihydropyridines inhibit verapamil binding in a temperature-independent fashion, as does diltiazem (all are KD effects). Allosteric coupling between benzothiazepine and dihydropyridine receptors is manifested in cardiac muscle since the negative inotropic potency of diltiazem is increased by nitrendipine and decreased by 4-(O-trifluromethy(phenyl)-2,6-dimethyl-5-nitro-1,4-dihydropyridin e-3- carboxylic acid, methyl ester. These results suggest a model in which the Ca2+ entry blocker receptor complex undergoes a change between 25 and 37 degrees C so that at the latter temperature all sites are directly coupled. Allosteric coupling may have important consequences in vivo since it can be detected in functional assays of Ca2+ channel activity.  相似文献   

5.
Tetrabutyl-2(2-phenoxyethyl)-1,3-propylidene diphosphonate (SR-7037) completely displaced dihydropyridine [( 3H]PN200-110), phenylalkylamine [( 3H]D888), and benzothiazepine [( 3H]diltiazem) ligands from brain L-type calcium channels. Half-maximal inhibition of [3H]PN200-110 binding occurred at 19 nM with a Hill coefficient of 0.96. SR-7037 primarily decreased the affinity for [3H]PN200-110 with a small, but significantly, effect on the maximal binding capacity. Kinetic studies showed that this was due to an increased radioligand dissociation rate from 0.04 min-1 to 0.43 min-1 in the presence of the diphosphonate. Displacement of [3H]D888 by SR-7037 was biphasic with respective IC50 of 44 and 8400 nM. Likewise, unlabeled (-)-D888 identified two sites with IC50 values of 0.9 and 27 nM. Both SR-7037 (1000 nM) and D888 (200 nM) accelerated radioligand dissociation about 2-fold. [3H]Diltiazem binding was inhibited by SR-7037 with an IC50 value of 29 nM. The inhibition of dihydropyridine binding by SR-7037 is enhanced by most divalent cations at millimolar concentrations with the following potency: Mn2+ greater than Mg2+ greater than Ca2+ greater than Co2+. Barium has the opposite effect. The half-maximal effect of calcium occurred at 6 microM free ion. Specific binding of [3H]D888 was antagonized in the presence of 1 mM CaCl2. It is concluded that SR-7037 has allosteric interactions with the dihydropyridine receptor of the L-type calcium channel. The differential effect of Ca2+ on the potency of D888 and diltiazem relative to that of SR-7037 indicates that the three drugs may bind to nonequivalent sites. These results support specific calcium channel inhibition, possibly at a novel site, as the primary mechanism of the diphosphonate's pharmacological actions.  相似文献   

6.
The alpha 1-subunit of the voltage-dependent L-type Ca2+ channel has distinct, allosterically coupled binding domains for drugs from different chemical classes (dihydropyridines, benzothiazepines, phenylalkylamines, diphenylbutylpiperidines). (-)-BM 20.1140 (ethyl-2,2-di-phenyl-4-(1-pyrrolidino)-5-(2-picolyl)- oxyvalerate) is a novel Ca2+ channel blocker which potently stimulates dihydropyridine binding (K0.5 = 2.98 nM) to brain membranes. This property is shared by (+)-cis-diltiazem, (+)-tetrandrine, fostedil and trans-diclofurime, but (-)-BM 20.1140 does not bind in a competitive manner to the sites labeled by (+)-cis-[3H]diltiazem. (+)-cis-Diltiazem and (-)-BM 20.1140 have differential effects on the rate constants of dihydropyridine binding. (+)-BM 20.1140 reverses the stimulation of the positive allosteric regulators (pA2 value for reversal of (-)-BM 20.1140 stimulation = 7.4, slope 0.72). The underlying molecular mechanism of the potentiation of dihydropyridine binding has been clarified. The K0.5 for free Ca2+ to stabilize a high affinity binding domain for dihydropyridines on purified L-type channels from rabbit skeletal muscle is 300 nM. (+)-Tetrandine (10 microM) increases the affinity 8-fold (K0.5 for free Ca2+ = 30.1 nM) and (+)-BM 20.114 (10 microM) inhibits the affinity increase (K0.5 for free Ca2+ = 251 nM). Similar results were obtained with membrane-bound Ca(2+)-channels from brain tissue which have higher affinity for free Ca2+ (K0.5 for free Ca2+ = 132 nM) and for dihydropyridines compared with skeletal muscle. It is postulated that the dihydropyridine and Ca(2+)-binding sites are interdependent on the alpha 1-subunit, that the different positive heterotropic allosteric regulators (by their differential effects on Ca2+ rate constants) optimize coordination for Ca2+ in the channel pore and, in turn, increase affinity for the dihydropyridines.  相似文献   

7.
Clostridium perfringens alpha-toxin is able to lyse various erythrocytes. Exposure of horse erythrocytes to alpha-toxin simultaneously induced hot-cold hemolysis and stimulated production of diacylglycerol and phosphorylcholine. When A23187-treated erythrocytes were treated with the toxin, these events were dependent on the concentration of extracellular Ca2+ . Incubation with the toxin of BAPTA-AM-treated horse erythrocytes caused no hemolysis or production of phosphorylcholine, but that of the BAPTA-treated erythrocytes did. When Quin 2-AM-treated erythrocytes were incubated with the toxin in the presence of 45Ca2+, the cells accumulated 45Ca2+ in a dose- and a time-dependent manner. These results suggest that the toxin-induced hemolysis and hydrolysis of phosphatidylcholine are closely related to the presence of Ca2+ in the cells. Flunarizine, a T-type Ca2+ channel blocker, and tetrandrine, an L- and T-type Ca2+ channel blocker, inhibited the toxin-induced hemolysis and Ca2+ uptake. However, L-type Ca2+ channel blockers, nifedipine, verpamil and diltiazem, an N-type blocker, omega-conotoxin SVIB, P-type blockers, omega-agatoxin TK and omega-agatoxin IVA, and a Q-type blocker, omega-conotoxin MVII C, had no such inhibitory effect. The observation suggests that Ca2+ taken up through T-type Ca2+ channels activated by the toxin plays an important role in hemolysis induced by the toxin.  相似文献   

8.
The oxyntic mucosa is rich in ECL cells. They secrete histamine and chromogranin A-derived peptides, such as pancreastatin, in response to gastrin and pituitary adenylate cyclase-activating peptide (PACAP). Secretion is initiated by Ca2+ entry. While gastrin stimulates secretion by opening L-type and N-type Ca2+ channels, PACAP stimulates secretion by activating L-type and receptor-operated Ca2+ channels. Somatostatin, galanin and prostaglandin E2 (PGE2) inhibit gastrin- and PACAP-stimulated secretion from the ECL cells. In the present study, somatostatin and the PGE2 congener misoprostol inhibited gastrin- and PACAP-stimulated secretion 100%, while galanin inhibited at most 60-65%. Bay K 8644, a specific activator of L-type Ca2+ channels, stimulated ECL-cell secretion, an effect that was inhibited equally effectively by somatostatin, misoprostol and galanin (75-80% inhibition). Pretreatment with pertussis toxin, that inactivates inhibitory G-proteins, prevented all three agents from inhibiting stimulated secretion (regardless of the stimulus). Pretreatment with nifedipine (10 microM), an L-type Ca2+ channel blocker, reduced PACAP-evoked pancreastatin secretion by 50-60%, gastrin-evoked secretion by approximately 80% and abolished the response to Bay K 8644. The nifedipine-resistant response to PACAP was abolished by somatostatin and misoprostol but not by galanin. Gastrin and PACAP raised the intracellular Ca2+ concentration in a biphasic manner, believed to reflect mobilization of internal Ca2+ followed by Ca2+ entry. Somatostatin and misoprostol blocked Ca2+ entry (and histamine and pancreastatin secretion) but not mobilization of internal Ca2+. The present observations on isolated ECL cells suggest that Ca2+ entry rather than mobilization of internal Ca2+ triggers exocytosis, that gastrin and PACAP activate different (but over-lapping) Ca2+ channels, that somatostatin, misoprostol and galanin interact with inhibitory G-proteins to block Ca2+ entry via L-type Ca2+ channels, and that somatostatin and misoprostol (but not galanin) in addition block N-type and/or receptor-operated Ca2+ channels.  相似文献   

9.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

10.
We examined the binding of the 1,4-dihydropyridine (DHP) [3H]PN200-110 to membranes from a fibroblast cell line transfected with the alpha 1 subunit (DHP receptor) of the L-type Ca2+ channel from rabbit skeletal muscle. Binding site affinity (KD) and density (Bmax) were 1.16 +/- 0.31 nM and 142 +/- 17 fmoles/mg protein, respectively. This affinity corresponded closely with that observed in native skeletal muscle. The Ca2+ channel antagonists diltiazem and MDL 12,330A stimulated [3H]PN200-110 binding in a dose-dependent manner while flunarizine, quinacrine and trifluoperazine inhibited binding. Surprisingly, D600 also stimulated [3H]PN200-110 binding in a dose-dependent and stereoselective manner. It is concluded that the fibroblast cells used in this study provide a unique system for interactions of the Ca2+ channel ligands with the alpha 1 subunit of the skeletal muscle L-type Ca2+ channel.  相似文献   

11.
The molecular basis of the Ca2+ channel block by (+)-cis-diltiazem was studied in class A/L-type chimeras and mutant alpha1C-a Ca2+ channels. Chimeras consisted of either rabbit heart (alpha1C-a) or carp skeletal muscle (alpha1S) sequence in transmembrane segments IIIS6, IVS6, and adjacent S5-S6 linkers. Only chimeras containing sequences from alpha1C-a were efficiently blocked by (+)-cis-diltiazem, whereas the phenylalkylamine (-)-gallopamil efficiently blocked both constructs. Carp skeletal muscle and rabbit heart Ca2+ channel alpha1 subunits differ with respect to two nonconserved amino acids in segments IVS6. Transfer of a single leucine (Leu1383, located at the extracellular mouth of the pore) from IVS6 alpha1C-a to IVS6 of alpha1S significantly increased the (+)-cis-diltiazem sensitivity of the corresponding mutant L1383I. An analysis of the role of the two heterologous amino acids in a L-type alpha1 subunit revealed that corresponding amino acids in position 1487 (outer channel mouth) determine recovery of resting Ca2+ channels from block by (+)-cis-diltiazem. The second heterologous amino acid in position 1504 of segment IVS6 (inner channel mouth) was identified as crucial inactivation determinant of L-type Ca2+ channels. This residue simultaneously modulates drug binding during membrane depolarization. Our study provides the first evidence for a guarded and modulated benzothiazepine receptor on L-type channels.  相似文献   

12.
(-)-[3H]Desmethoxyverapamil ((-)-DMV) binds saturably to homogenates of the osteoblast-like cell lines UMR 106 and ROS 17/2.8 with KD values of 45 and 61 nM and Bmax values of 6.0 and 5 pmol/mg protein, respectively. Binding is stereoselective with (-)-DMV 8-10 times more potent than (+)-DMV. None of the dihydropyridine or benzothiazepine Ca2+ antagonists examined affect (-)-[3H]DMV binding. Monovalent cations such as Li+, Na+, and K+ inhibit (-)[3H]DMV binding in the 100-400 mM range. Divalent cations such as Ba2+, Sr2+, Ca2+, and Mg2+ are effective binding inhibitors in the 2-5 mM range. ROS 17/2.8 cells express a channel on the apical plasma membrane which conducts Ba2+ and Ca2+. With 110 mM BaCl2 or CaCl2 as charge carriers the single channel conductance is 3-5 picosiemens. In cell-excised patches the channel selects for Ba2+ over Na+ 3.3:1. In the absence of divalent ions the channel conducts Na+ ions with a single channel conductance of 13 picosiemens. This Na+ conductance decreases with physiological levels of Ca2+. The channel appears related to the (-)-[3H]DMV binding site, since its conductance is blocked by verapamil in a dose-dependent manner. Moreover, DMV blocks the channel stereoselectively with relative potencies of the isomers corresponding to their affinities for the binding site. The dihydropyridine drugs BAY K 8644 or (+)-202-791 do not affect channel opening. These binding and biophysical data indicate that osteoblast cells have a phenylalkylamine receptor associated with a Ca2+ channel.  相似文献   

13.
The role of inactivated channel conformation and use dependence for diltiazem, a specific benzothiazepine calcium channel inhibitor, was studied in chimeric constructs and point mutants created in the IVS5 transmembrane segment of the L-type cardiac calcium channel. All mutations, chimeric or point mutations, were restricted to IVS5, while the YAI-containing segment in IVS6, i.e. the primary interaction site with benzothiazepines, remained intact. Slowed inactivation rate and incomplete steady state inactivation, a behavior of some mutants, were accompanied by a reduced or by a complete loss of use-dependent block by diltiazem. Single channel properties of mutants that lost use dependence toward diltiazem were characterized by drastically elongated mean open times and distinctly slower time constants of open time distribution. Mutation of individual residues of the IVMLF segment in IVS5 did not mimic the complete loss of use dependence as observed for the replacement of the whole stretch. These results establish evidence that amino acids that govern inactivation and the drug-binding site and other amino acids that are located distal from the putative drug-binding site contribute significantly to the function of the benzothiazepine receptor region. The data are consistent with a complex "pocket" conformation that is responsive to a specific class of L-type calcium channel inhibitors. The data allow for a concept that multiple sites within regions of the alpha(1) subunit contribute to auto-regulation of the L-type Ca(2+) channel.  相似文献   

14.
The Ca2+ channel blocker, nifedipine, a dihydropyridine derivative, inhibited the Ca2+ influx and release from internal stores caused by collagen or a low concentration of the thromboxane A2 (TXA2) analogue, 9,11-epithio-11,12-methano-TXA2 (STA2) (10 nM), but did not inhibit those caused by thrombin or a high concentration of STA2 (100 nM). These results indicate the presence of two distinct, dihydropyridine-sensitive and insensitive, Ca2+ channels dependent on the concentrations and classes of agonists in human platelets.  相似文献   

15.
Heparin and related polyanions are a new class of compounds interacting with 1,4-dihydropyridine-sensitive L-type Ca2+ channels in a tissue-specific manner. Labeling of membrane-bound Ca2+ channels in rabbit skeletal muscle transverse tubules at the phenylalkylamine, benzothiazepine, and 1,4-dihydropyridine-selective domains was inhibited reversibly by a noncompetitive mechanism as shown by equilibrium saturation analysis and kinetic studies. (+)-cis-diltiazem but not (-)-cis-diltiazem reduced the inhibitory potency of heparin for 1,4-dihydropyridines. Antagonistic but not agonistic 1,4-dihydropyridines reversed heparin inhibition at the benzothiazepine site. Heparin forms a tight complex with the purified Ca2+ channel which is highly sensitive with respect to heparin inhibition (IC50 value: 0.05 microgram/ml) of 1,4-dihydropyridine binding. Reconstituted channel complexes have completely lost 1,4-dihydropyridine binding-inhibition by heparin and are not retained by lectin or heparin affinity columns. In whole cell patch clamp experiments with guinea-pig cardiac myocytes heparin increased the current through L-type Ca2+ channels when applied extracellulary. Synthetic peptides (representing putative heparin binding domains) which were derived from the rabbit skeletal muscle alpha 1-subunit reversed the inhibitory effects of heparin on 1,4-dihydropyridine receptors. Reversal for a peptide representing an extracellular domain occurred by an apparently competitive mechanism. It is suggested that heparin and related polyanions may interact with an evolutionary conserved cluster of basic amino acids in the large putative extracellular domain connecting the fifth and sixth putative transmembrane segment in the first motif of the ionic pore-forming alpha 1-subunit from skeletal muscle.  相似文献   

16.
The 1,4-dihydropyridine (+/-)-[3H]nitrendipine reversibly binds to mitochondrial preparations from guinea-pig heart with a dissociation constant (Kd) of 593 +/- 77 nM and a maximum density of binding sites (Bmax.) of 1.75 +/- 0.27 nmol/mg of protein. This low-affinity high-capacity 1,4-dihydropyridine-binding site does not discriminate between the enantiomers of nitrendipine and is also found in mitochondrial membranes from guinea-pig liver (Kd 586 +/- 91 nM; Bmax. 0.36 +/- 0.04 nmol/mg of protein) and kidney (Kd 657 +/- 149 nM; Bmax. 0.56 +/- 0.12 nmol/mg of protein). Phenylalkylamines (e.g. verapamil) inhibit ( +/- )-[3H]nitrendipine binding with micromolar inhibition constants, but the benzothiazepine D-cis-diltiazem, a potent Ca2+-channel blocker, is without effect. The binding is heat-stable, shows a V-shaped pH-dependence with a minimum around pH 7.0, and is strongly dependent on ionic strength in the incubation medium. The cations La3+ greater than Cd2+ much greater than Co2+ greater than Ca2+ much greater than Ba2+ greater than Mg2+ greater than Li+ greater than Na+ and the anions NO3- greater than C1- greater than or equal to F- stimulate the binding, whereas PO4(3-) greater than SO4(2-) slightly inhibit it. The low-affinity ( +/- )-[3H]nitrendipine-binding site located on the mitochondrial inner membrane is biochemically and pharmacologically different from the 1,4-dihydropyridine-receptor domain of the L-type Ca2+ channel. Furthermore, it is not identical with any of the low-affinity 1,4-dihydropyridine-binding sites described so far.  相似文献   

17.
High-voltage activated Ca channels in tiger salamander cone photoreceptors were studied with nystatin-permeabilized patch recordings in 3 mM Ca2+ and 10 mM Ba2+. The majority of Ca channel current was dihydropyridine sensitive, suggesting a preponderance of L- type Ca channels. However, voltage-dependent, incomplete block (maximum 60%) by nifedipine (0.1-100 microM) was evident in recordings of cones in tissue slice. In isolated cones, where the block was more potent, nifedipine (0.1-10 microM) or nisoldipine (0.5-5 microM) still failed to eliminate completely the Ca channel current. Nisoldipine was equally effective in blocking Ca channel current elicited in the presence of 10 mM Ba2+ (76% block) or 3 mM Ca2+ (88% block). 15% of the Ba2+ current was reversibly blocked by omega-conotoxin GVIA (1 microM). After enhancement with 1 microM Bay K 8644, omega-conotoxin GVIA blocked a greater proportion (22%) of Ba2+ current than in control. After achieving partial block of the Ba2+ current with nifedipine, concomitant application of omega-conotoxin GVIA produced no further block. The P-type Ca channel blocker, omega-agatoxin IVA (200 nM), had variable and insignificant effects. The current persisting in the presence of these blockers could be eliminated with Cd2+ (100 microM). These results indicate that photoreceptors express an L-type Ca channel having a distinguishing pharmacological profile similar to the alpha 1D Ca channel subtype. The presence of additional Ca channel subtypes, resistant to the widely used L-, N-, and P-type Ca channel blockers, cannot, however, be ruled out.  相似文献   

18.
Incubation of bovine adrenal chromaffin cells in high K+ (38 mM) during 24-48 h enhanced 2.5 to five times the expression of SNAP-25 protein and mRNA, respectively. This increase was reduced 86% by furnidipine (an L-type Ca2+ channel blocker) but was unaffected by either omega-conotoxin GVIA (an N-type Ca2+ channel blocker) or -agatoxin IVA (a P/Q-type Ca2+ channel blocker). Combined blockade of N and P/Q channels with omega-conotoxin MVIIC did, however, block by 76% the protein expression. The inhibitory effects of fumidipine were partially reversed when the external Ca2+ concentration was raised from 1.6 to 5 mM. These findings, together with the fact that nicotinic receptor activation or Ca2+ release from internal stores also enhanced SNAP-25 protein expression, suggest that an increment of cytosolic Ca2+ concentration ([Ca2+]), rather than its source or Ca2+ entry pathway, is the critical signal to induce the protein expression. The greater coupling between L-type Ca2+ channels and protein expression might be due to two facts: (a) L channels contributed 50% to the global [Ca2+]i rise induced by 38 mM K+ in indo-1-loaded chromaffin cells and (b) L channels undergo less inactivation than N or P/Q channels on sustained stimulation of these cells.  相似文献   

19.
Verapamil and dimethylcurine are Ca2+ entry blockers of essentially different chemical structures which presumably bind to the same arylalkylamine receptor of the L-type Ca channel. A systematic conformational analysis of methoxyverapamil (D-600) and dimethylcurine has been carried out using a molecular mechanics method. The lowest minimum-energy conformations of D-600 are predisposed to chelate Ca2+ by four oxygen atoms of the stacked methoxyphenyl moieties. Comparison of the lowest energy conformations of D-600-Ca2+ and dimethylcurine revealed a similar spatial disposition of cationic groups and methoxyphenyl moieties in the two compounds. A three-dimensional model of arylalkylamine receptor was suggested which incorporates two nucleophilic areas of the Ca channel. Dimethylcurine binds to these areas by its quaternary amine functions, whereas D-600 does so by amine function and via coordinated Ca2+. The results support the hypotheses on ternary complex formation between the ligands of Ca channel, their receptors, and Ca2+.  相似文献   

20.
Wang X  Du L  Peterson BZ 《Biochemistry》2007,46(25):7590-7598
How dihydropyridines modulate L-type voltage-gated Ca2+ channels is not known. Dihydropyridines bind cooperatively with Ca2+ binding to the selectivity filter, suggesting that they alter channel activity by promoting structural rearrangements in the pore. We used radioligand binding and patch-clamp electrophysiology to demonstrate that calcicludine, a toxin from the venom of the green mamba snake, binds in the outer vestibule of the pore and, like Ca2+, is a positive modulator of dihydropyridine binding. Data were fit using an allosteric scheme where dissociation constants for dihydropyridine and calcicludine binding, KDHP and KCaC, are linked via the coupling factor, alpha. Nine acidic amino acids located within the S5-Pore-helix segment of repeat III were sequentially changed to alanine in groups of three, resulting in the mutant channels, Mut-A, Mut-B, and Mut-C. Mut-A, whose substitutions are proximal to IIIS5, exhibits a 4.5-fold reduction in dihydropyridine binding and is insensitive to calcicludine binding. Block of Mut-A currents by calcicludine is indistinguishable from wild-type, indicating that KCaC is unchanged and that the coupling between dihydropyridine and calcicludine binding (i.e., alpha) is disrupted. Mut-B and Mut-C possess KDHP values that resemble that of the wild type. Mut-C, the most C-terminal of the mutant channels, is insensitive to calcicludine binding and block. KCaC values for the Mut-C single mutants, E1122A, D1127A, and D1129A, increase from 0.3 (wild type) to 1.14, 2.00, and 20.5 microM, respectively. Together, these findings suggest that dihydropyridine antagonist and calcicludine binding to L-type Ca2+ channels promote similar structural changes in the pore that stabilize the channel in a nonconducting, blocked state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号