首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have indicated that an increased asparagine to glutamine ratio (Asn : Gln) occurs in the xylem fluid of Lolium perenne 24 h after defoliation. However, the absolute changes in Asn and Gln leading to the increased Asn : Gln ratio are unknown. The present study tested the hypotheses that: (1) defoliation-induced changes in xylem amino acid composition occur in L perenne within the first 24 h following defoliation, irrespective of phasing with respect to the diurnal light/dark cycle; and (2) the increase in Asn : Gln ratio in the xylem fluid of L perenne following defoliation is due to an increase in Asn content. Plants of L perenne L. 'Aurora' were grown in flowing solution culture for 40 d. Plants were then either left intact, defoliated at the end of the light period or defoliated at the end of the dark period. 15N-labelled NO3- was supplied following defoliation to discriminate between the recovery of N absorbed prior to, and following, defoliation. Xylem samples were collected over the subsequent 24 h period with amino acids speciated by GC-MS. There was support for the first hypothesis: increased Asn : Gln ratios occurred within the first 24 h, irrespective of the phasing of defoliation with respect to light/dark cycles. The second hypothesis was not supported: the concentration of all amino acids in the xylem exudate declined after defoliation, and the increased Asn : Gln ratio was accounted for by a disproportionately large reduction in Gln levels. Low concentrations of amino acids in the xylem of defoliated plants precluded accurate discrimination of their nitrogen content into pre- and post-defoliation sources.  相似文献   

2.
不同甘氨酸浓度对无菌水培番茄幼苗生长和氮代谢的影响   总被引:5,自引:0,他引:5  
植物不但能吸收矿质氮(NH+4-N、NO-3-N),而且也能直接吸收有机态氮,如氨基酸、小分子蛋白质等.为探讨有机态氮浓度对番茄幼苗生长和氮代谢的影响,无菌水培条件下采用2个番茄品种(申粉918、沪樱932)设置4种不同浓度(0、1.5、3.0、6 0mmol·L-1)的甘氨酸态氮(Gly-N),研究了番茄幼苗干物质重、吸氮量、氮代谢相关产物和氮代谢关键酶活性.结果表明,无菌水培条件下,随营养液中Gly浓度的增加,番茄植株干物质重、总氮量、地上部和根系游离氨基酸、可溶性蛋白、地上部可溶性糖含量增加.与无氮对照相比,各处理均显著降低了番茄地上部淀粉含量(P<0.05),而Gly浓度对根系淀粉含量无显著影响.随营养液中Gly浓度的增加,番茄地上部和根系的硝酸还原酶(NR)、谷氨酸脱氢酶(NADH-GDH)、丙转氨酶(GPT)和谷草转氨酶(GOT)活性均提高.无氮对照的NR活性与1.5 mmol·L-1 Gly处理之间差异不显著,而与3.0 mmol·L-1和6.0 mmol·L-1 Gly两处理之间差异显著(P<0.05);1.5 mmol·L-1 Gly和3.0 mmol·L-1 Gly两个处理之间的地上部NADH-GDH、GPT和GOT活性差异不显著.Gly浓度与番茄植株干物质重、总氮量呈显著正相关(R2>0.905* *),这表明两个番茄品种均能直接吸收利用甘氨酸.沪樱932吸收Gly的能力显著大于申粉918(P<0.05).因此,Gly-N可以成为番茄生长的良好氮源,其生理效应受Gly浓度的影响;不同品种番茄对Gly的吸收利用能力不同.  相似文献   

3.
Symbiotic Chlorella F36-ZK isolated from Paramecium bursaria F36 has constitutive amino acid transport systems, whereas free-living Chlorella does not. We found that in symbiotic algae, the rate of serine (Ser) uptake increased in the presence of glucose (Glc) and non-metabolisable analogues, whilst incorporation of Ser into protein was not affected. The activation did not involve new protein synthesis and was enhanced under alkaline conditions. An increase in the rate of Ser transport resulted from Glc treatment even when pulsed for only 1min at low concentrations (EC(50)=3muM). No uptake of Glc itself was observed in F36-ZK. Thus, the transport signal appears to be transmitted via a glucose sensing and signalling pathway. Many Glc-related compounds also increased the rate of Ser uptake without an additive effect, suggesting recognition of these sugars by the same receptor and providing some insight into features of the structure-activity relationship. Ser uptake by F36-ZK is inhibited by Ca(2+), which is typically considered to be a positive modulator of amino acid uptake. Given that Glc restored Ser uptake from inhibition by Ca(2+), we propose that this compound is possibly involved in regulation of amino acid transport in this symbiotic relationship.  相似文献   

4.
Based on substrate specificity, an alkaline pH optimum, sensitivity to selected proteinase inhibitors, and molecular analysis, we provide evidence for the presence of a trypsin-like serine proteinase in the salivary gland complex (SGC) of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae). The predominant activity in extracts of the SGC against N(2)-benzoyl-L-arginine-p-nitroanilide (L-BApNA) was at pH 10, but a minor peak of activity also occurred at pH 5. The major BApNAase activity focused at 10.4 during preparative isoelectric focusing and was eluted with an apparent molecular weight of 23,000 from a calibrated gel filtration column. The BApNAase fraction gave a single major band when analyzed on a casein zymogram. The activity was completely suppressed by the serine protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor. A cDNA coding for a trypsin-like protein in the salivary glands of L. lineolaris was cloned and sequenced. The 971bp cDNA contained an 873-nucleotide open reading frame encoding a 291-amino acid trypsin precursor. The encoded protein included amino acid sequence motifs that are conserved with four homologous serine proteases from other insects. Typical features of the putative trypsin-like protein from L. lineolaris included the serine protease active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, the residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for trypsin like enzymes in the salivary glands of L. lineolaris.  相似文献   

5.
Trypsin-like enzymes from the salivary gland complex (SGC) of Lygus hesperus Knight were partially purified by preparative isoelectric focusing (IEF). Enzyme active against Nalpha-benzoyl-L-arginine-p-nitroanilide (BApNA) focused at approximately pH 10 during IEF. This alkaline fraction gave a single activity band when analyzed with casein zymograms. The serine proteinase inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor, completely inhibited or suppressed the caseinolytic activity in the crude salivary gland extract as well as the IEF-purified sample. Chicken egg white trypsin inhibitor also inhibited the IEF-purified sample but was not effective against a major caseinolytic band in the crude salivary gland extract. These data indicated the presence of serine proteinases in the SGC of L. hesperus. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for serine proteinases in L. hesperus. The encoded trypsin-like protein included amino acid sequence motifs, which are conserved with five homologous serine proteinases from other insects. Typical features of the putative trypsin-like protein from L. hesperus included residues in the serine proteinase active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides.  相似文献   

6.
It has been previously shown that complexation of Cu2+ is essential for effective uptake of Cu2+ by brain tissues and that 67Cu complexed to His is taken up by a high affinity and a low affinity saturable process (Hartter, D. E., and Barnea, A. (1988) J. Biol. Chem. 263, 799-805). Using rat hypothalamic tissue slices, we defined the ligand specificity for these two uptake processes. The effectiveness of stereoisomers or methyl (Me) derivatives of His in facilitating 67Cu uptake by the high affinity process was in this decreasing order: L-His = D-His = Me-3-N-His greater than Me-ester-His greater than Me-alpha-N-His greater than or equal to Me-1-N-His. By the low affinity process it was: L-His = D-His = Me-3-N-His = Me-ester-His = Me-alpha-N-His greater than Me-1-N-His. When facilitation of 67Cu uptake by 14 different amino acids was evaluated using copper:ligand (Cu:L) ratios of 1:2,000 (high affinity process) or 1:2 (low affinity process), His stood out as the most effective. However, when [Cu2+] was 0.1 microM and the Cu:L ratio was increased from 1:2,000 to 1:20,000, Ala, Gly, Lys, Ser, or Thr was each as effective as His; when [Cu2+] was 10 microM and the Cu:L ratio was increased from 1:2 to 1:2,000, Gln, Glu, Gly, Lys, or Ser was each superior to His in facilitating 67Cu uptake. Moreover, by comparison to 67Cu uptake at a Cu:L ratio of 1:2, increasing the ratio attenuated (His) or enhanced (Gln, Glu, Gly, Lys, Ser) 67Cu uptake. These results indicate that 1) coordination of Cu2+ with the 1-N-imidazole and the alpha-amino (but not with the carboxyl) is essential for His facilitation of 67Cu uptake, and 2) the amino acid specificity for uptake of complexed Cu2+ is a function of both [Cu2+] and the molar ratio of copper to amino acid. These results are consistent with coordination of Cu2+ with at least three nitrogens being a primary factor facilitating copper uptake by brain tissue.  相似文献   

7.
The amino acid sequence of satyr tragopan lysozyme and its activity was analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had three amino acid substitutions at positions 103 (Asn to Ser), 106 (Ser to Asn), and 121 (His to Gln) comparing with Temminck's tragopan lysozyme and five amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), 101 (Asp to Gly) and 103 (Asn to Ser) with chicken lysozyme. The time course analysis using N-acetylglucosamine pentamer as a substrate showed a decrease of binding free energy change, 1.1 kcal/mol at subsite A and 0.2 kcal/mol at subsite B, between satyr tragopan and chicken lysozymes. This was assumed to be responsible for the amino acid substitutions at subsite A-B at position 101 (Asp to Gly), however another substitution at position 103 (Asn to Ser) considered not to affect the change of the substrate binding affinity by the observation of identical time course of satyr tragopan lysozyme with turkey and Temminck's tragopan lysozymes that carried the identical amino acids with chicken lysozyme at this position. These results indicate that the observed decrease of binding free energy change at subsites A-B of satyr tragopan lysozyme was responsible for the amino acid substitution at position 101 (Asp to Gly).  相似文献   

8.
T. C. Ta  K. W. Joy 《Planta》1986,169(1):117-122
15N-labelled (amino group) asparagine (Asn), glutamate (Glu), alanine (Ala), aspartate (Asp) and serine (Ser) were used to study the metabolic role and the participation of each compound in the photorespiratory N cycle ofPisum sativum L. leaves. Asparagine was utilised as a nitrogen source by either deamidation or transamination, Glu was converted to Gln through NH3 assimilation and was a major amino donor for transamination, and Ala was utilised by transamination to a range of amino acids. Transamination also provided a pathway for Asp utilisation, although Asp was also used as a substrate for Asn synthesis. In the photorespiratory synthesis of glycine (Gly), Ser, Ala, Glu and Asn acted as sources of amino-N, contributing, in the order given, 38, 28, 23, and 7% of the N for glycine synthesis; Asp provided less than 4% of the amino-N in glycine. Calculations based on the incorporation of15N into Gly indicated that about 60% (Ser), 20% (Ala), 12% (Glu) and 11% (Asn) of the N metabolised from each amino acid was utilised in the photorespiratory nitrogen cycle.Abbreviations Ala alamine - Asn asparagine - Asp aspartate - Glu glutamate - MOA methoxylamine - Ser serine  相似文献   

9.
Glutathione (GSH) concentration increases in bovine oocytes during in vitro maturation (IVM). The constitutive amino acids involved in GSH synthesis are glycine (Gly), glutamate (Glu) and cysteine (Cys). The present study was conducted to investigate the effect of the availability of glucose, Cys, Gly and Glu on GSH synthesis during IVM. The effect of the amino acid serine (Ser) on intracellular reduced/oxidized glutathione (GSH/GSSG) content in both oocytes and cumulus cells was also studied. Cumulus-oocyte complexes (COC) of cattle obtained from ovaries collected from an abattoir were matured in synthetic oviduct fluid (SOF) medium containing 8 mg/ml bovine serum albumin-fatty acid-free (BSA-FAF), 10 microg/ml LH, 1 microg/ml porcine FSH (pFSH) and 1 microg/ml 17 beta-estradiol (17beta-E2). GSH/GSSG content was measured using a double-beam spectrophotometer. The COC were cultured in SOF supplemented with 1.5mM or 5.6mM glucose (Exp. 1); with or without Cys+Glu+Gly (Exp. 2); with the omission of one constitutive GSH amino acid (Exp. 3); with 0.6mM Cys or Cys+Ser (Exp. 4). The developmental capacity of oocytes matured in IVM medium supplemented with Cys and the cell number per blastocyst were determined (Exp. 5). The results reported here indicate (1) no differences in the intracellular GSH/GSSG content at any glucose concentrations. Also, cumulus cell number per COC did not differ either before or after IVM (Exp. 1). (2) Glutathione content in oocytes matured in SOF alone were significantly different from oocytes incubated with SOF supplemented with Cys+Glu+Gly (Exp. 2). (3) Addition of Cys to maturation medium, either with or without Gly and Glu supplementation resulted in an increase of GSH/GSSG content. However, when Cys was omitted from the IVM medium intracellular GSH in oocytes or cumulus cells was less but not significantly altered compared to SOF alone (Exp. 3). (4) Glutathione content in both oocytes and cumulus cells was significantly reduced by incubation with 5mM Ser (Exp.4). (5) There was a significant increase in cleavage and blastocyst rates when Cys was added to maturation medium. In contrast, the cleavage, morula and blastocyst rates were significantly different when 5mM Ser was added to maturation media. There was also a significant difference in mean cell number per blastocyst, obtained from oocytes matured with 5mM Ser (Exp. 5). This study provides evidence that optimal embryo development in vitro is partially dependent on the presence of precursor amino acids for intracellular GSH production. Moreover, the availability of Cys might be a critical factor for GSH synthesis during IVM in cattle oocytes. Greater Ser concentration in IVM medium altered "normal" intracellular GSH in both oocytes and cumulus cells with negative consequences for subsequent developmental capacity.  相似文献   

10.
A serine proteinase possessing a fibrinolytic activity was isolated from a culture filtrate of Streptomyces spheroides, strain 35. A consecutive use of affinity chromatography on bacillichin-silochrome and bacitracin-sepharose and ion-exchange chromatography on anionie PAP and cationic KMT resulted in a homogeneous proteinase with 1060-fold purification and 19% yield. The enzyme has a molecular weight of 28000; its amino acid composition is Asp31, Ser28, Thr29, Glu9, Pro14, Gly35, Ala42, Val26, Ile14, Leu13, Met2, Tyr9, Phe4, Trp3, His6, Lys4, Arg10. The enzyme has a pI at pH greater than 10 and the activity optimum against Z-L-Ala-L-Ala-L-Leu-pNA at pH 10-11. The enzyme is stable within the pH range of 4-11 and in 6 M guanidinium chloride pH 8.0 in the presence of Ca2+. The enzyme is inhibited by diisopropylfluorophosphate and benzylsulfofluoride, specific inhibitors of serine proteinases as well as by potato proteinase inhibitor. The serine proteinase SSPB isolated from Str. spheroides, strain 35 can be related to subtilisin-like serine proteinase, especially to those of SGPD and SGPE of Str. griseus.  相似文献   

11.
A multidomain cystatin was purified from the leaves of mature and seedling tomato plants (Lycopersicon esculentum, cv Bonnie Best) that had been sprayed with methyl jasmonate. For seedlings, cystatin purification was accomplished using EDTA washing, KCI extraction, 70 degrees C heat treatment, ammonium sulfate fractionation and gel filtration chromatography. For mature plants, DEAE chromatography was also needed to separate a protease, hydrolysis products of cystatin and serine proteinase inhibitors from the intact cystatin. Purified tomato cystatin has a molecular weight (Mr) of 88 kDa, eight papain binding domains, is a non-competitive inhibitor of papain with K1 of 1.4 nM and is not a glycoprotein. Tryptic peptides (Mr 26, 13 kDa) and most chymotryptic peptides (Mr 33, 13 kDa) of tomato cystatin retain inhibitor activity. Amino acid analysis revealed no Cys; Asx, Glx, Gly, Ser accounted for almost half the residues and there was some homology with potato multicystatin. Activity is stable at pH 4-11 at 4 degrees C, but unstable at neutral pH at > 60 degrees C (Ea = 92.5 kJ/mole). Extracts of mature plants treated with methyl jasmonate contain lower Mr cystatins that appear to result from the action of an endogenous 26 kDa protease on the 88 kDa inhibitor.  相似文献   

12.
13.
The metabolism of Streptococcus pneumoniae was studied by isotopologue profiling after bacterial cultivation in chemically defined medium supplemented with [U-(13)C(6)]- or [1,2-(13)C(2)]glucose. GC/MS analysis of protein-derived amino acids showed lack of (13)C label in amino acids that were also essential for pneumococcal growth. Ala, Ser, Asp, and Thr displayed high (13)C enrichments, whereas Phe, Tyr, and Gly were only slightly labeled. The analysis of the labeling patterns showed formation of triose phosphate and pyruvate via the Embden-Meyerhof-Parnas pathway. The labeling patterns of Asp and Thr suggested formation of oxaloacetate exclusively via the phosphoenolpyruvate carboxylase reaction. Apparently, α-ketoglutarate was generated from unlabeled glutamate via the aspartate transaminase reaction. A fraction of Phe and Tyr obtained label via the chorismate route from erythrose 4-phosphate, generated via the pentose phosphate pathway, and phosphoenolpyruvate. Strikingly, the data revealed no significant flux from phosphoglycerate to Ser and Gly but showed formation of Ser via the reverse reaction, namely by hydroxymethylation of Gly. The essential Gly was acquired from the medium, and the biosynthesis pathway was confirmed in experiments using [U-(13)C(2)]glycine as a tracer. The hydroxymethyl group in Ser originated from formate, which was generated by the pyruvate formate-lyase. Highly similar isotopologue profiles were observed in corresponding experiments with pneumococcal mutants deficient in PavA, CodY, and glucose-6-phosphate dehydrogenase pointing to the robustness of the core metabolic network used by these facultative pathogenic bacteria. In conclusion, this study demonstrates the dual utilization of carbohydrates and amino acids under in vitro conditions and identifies the unconventional de novo biosynthesis of serine by pneumococci.  相似文献   

14.
Oxolinic acid (OA) resistance in field isolates of Burkholderia glumae, a causal agent of bacterial grain rot, is dependent on an amino acid substitution at position 83 in GyrA (GyrA83). In the present study, among spontaneous in vitro mutants from the OA-sensitive B. glumae strain Pg-10, we selected OA-resistant mutants that emerged at a rate of 5.7 x 10(-10). Nucleotide sequence analysis of the quinolone resistance-determining region in GyrA showed that Gly81Cys, Gly81Asp, Asp82Gly, Ser83Arg, Asp87Gly, and Asp87Asn are observed in these OA-resistant mutants. The introduction of each amino acid substitution into Pg-10 resulted in OA resistance, similar to what was observed for mutants with the responsible amino acid substitution. In vitro growth of recombinants with Asp82Gly was delayed significantly compared to that of Pg-10; however, that of the other recombinants did not differ significantly. The inoculation of each recombinant into rice spikelets did not result in disease. In inoculated rice spikelets, recombinants with Ser83Arg grew less than Pg-10 during flowering, and growth of the other recombinants was reduced significantly. On the other hand, the reduced growth of recombinants with Ser83Arg in spikelets was compensated for under OA treatment, resulting in disease. These results suggest that amino acid substitutions in GyrA of B. glumae are implicated in not only OA resistance but also fitness on rice plants. Therefore, GyrA83 substitution is thought to be responsible for OA resistance in B. glumae field isolates.  相似文献   

15.
A cDNA encoding a serine proteinase homologue of kuruma shrimp (Marsupenaeus japonicus) was cloned. The 1257 bp cDNA encodes a 339 amino acid putative peptide, with a signal sequence of 16 amino acid residues. The deduced amino acid sequence is 42-67% similar to the immune-related serine proteinases and serine proteinase homologues of arthropods. It contains catalytic triad residues in the putative catalytic domain except for one substitution of Ser by a Gly residue. The six cysteine residues that form three disulphide bridges in most serine proteinases were conserved. The M. japonicus serine proteinase homologue was mainly expressed in haemocytes, in which expression dramatically increased after 3 days feeding with peptidoglycan at 0.2 mg kg(-1) shrimp body weight per day.  相似文献   

16.
Serine (Ser) biosynthesis in C(3) plants can occur via several pathways. One major route involves the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC, EC 2.1.1.10) and serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) with glycine (Gly) as one-carbon (1-C) source. An alternative THF-dependent pathway involves the C1-THF synthase/SHMT activities with formate as 1-C source. Here, we have investigated aspects of the regulation of these two folate-mediated pathways in Arabidopsis thaliana (L.) Heynh. Columbia using two approaches. Firstly, transgenic plants overexpressing formate dehydrogenase (FDH, EC 1.2.1.2) were used to continue our previous studies on the function of FDH in formate metabolism. The formate pool size was approximately 73 nmol (g FW)(-1) in wild type (WT) Arabidopsis plants; three independent transgenic lines had similar-sized pools of formate. Transgenic plants produced more (13)CO(2) from supplied [(13)C]formate than did WT plants but were not significantly different from WT plants in their synthesis of Ser. We concluded that FDH has no direct role in the regulation of the above two pathways of Ser synthesis; the breakdown of formate to CO(2) by the FDH reaction is the primary and preferred fate of the organic acid in Arabidopsis. The ratio between the GDC/SHMT and C1-THF synthase/SHMT pathways of Ser synthesis from [alpha-(13)C]Gly and [(13)C]formate, respectively, in Arabidopsis shoots was 21 : 1; in roots, 9 : 1. In shoots, therefore, the pathway from formate plays only a small role in Ser synthesis; in the case of roots, results indicated that the 9 : 1 ratio was as a result of greater fluxes of (13)C through both pathways together with a relatively higher contribution from the C1-THF synthase/SHMT route than in shoots. We also examined the synthesis of Ser in a GDC-deficient mutant of Arabidopsis (glyD) where the GDC/SHMT pathway was impaired. Compared with WT, glyD plants accumulated 5-fold more Gly than WT after supplying [alpha-(13)C]Gly for 24 h; the accumulation of Ser from [alpha-(13)C]Gly was reduced by 25% in the same time period. On the other hand, the accumulation of Ser through the C1-THF synthase/SHMT pathway in glyD plants was 2.5-fold greater than that in WT plants. Our experiments confirmed that the GDC/SHMT and C1-THF synthase/SHMT pathways normally operate independently in Arabidopsis plants but that when the primary GDC/SHMT pathway is impaired the alternative C1-THF synthase/SHMT pathway can partially compensate for deficiencies in the synthesis of Ser.  相似文献   

17.
During vegetative regrowth of Medicago sativa L., soil N, symbiotically fixed N2 and N reserves meet the nitrogen requirements for shoot regrowth. Experiments with nodulated or non-nodulated plants were carried out to investigate the changes in N flows originating from the different N sources and in xylem transport of amino acids during regrowth. Exogenous N uptake, N2 fixation and endogenous N remobilization were estimated by 15N labelling and amino acids in xylem sap were analysed. Removal of shoots resulted in great declines of exogenous N flows derived either from N2 or from NH4NO3 during the first week of regrowth, thereafter recovery increased linearly. Mineral N uptake as well as N2 fixation occurred mainly between the 10th and 18th day after removal of shoots while exogenous N assimilation in intact plants remained at a steady level. Nitrogen remobilization rates in defoliated plants increased by at least three to five-fold, especially during the first 10 days following shoot removal. Compared to control plants, contents of amino acids in xylem sap, during the first 10 days of regrowth, were reduced by about 72% and 82% in NH4NO3 grown and in N2 fixing plants, respectively. Asparagine was the main amino acid transported in xylem sap of both treated plants. Its relative contents during this period significantly decreased from 75% to 59% and from 67% to 36% respectively in non-nodulated plants and in nodulated ones. This decline was accompanied by compensatory increase in the relative contents of aspartate and glutamine.  相似文献   

18.
A thiol-dependent serine proteinase has been isolated for the first time from a higher basidiomycete Coprinus 7N culture filtrate by affinity chromatography on bacitracin-Sepharose combined with ion-exchange chromatography on DEAE-Sepharose. This procedure resulted in a homogeneous enzyme with 32-fold purification and 55% yield. The enzyme has a molecular mass of 33,000 Da and pI of 8.5; its amino acid composition appears as follows: Lys7, His7, Arg10, Asx29, Thr24, Ser30, Glx19, Pro13, Gly39, Ala40, Cys2-3, Val23, Met1-2, Ile14, Leu13, Tyr6, Phe7. The enzyme shows the optimal activity towards Z-Ala-Ala-Leu-pNA at 8.5 and is stable at pH 6-9. The temperature optimum of the enzyme activity lies at 37 degrees C. The proteinase is completely inactivated by the specific inhibitors of serine proteinases, diisopropylfluorophosphate and phenylmethylsulfonylfluoride, as well as by the SH-group reagent, p-chloromercuribenzoate. The Coprinus 7N proteinase hydrolyzes, azocasein, azoalbumin, hemoglobin, fibrin and synthetic chromogenic peptide substrates, e. g., Z-Ala-Ala-Leu-pNA, Z-Gly-gly-Leu-pNA. Some properties of the Coprinus 7N proteinase are very similar to those of thiol-dependent serine proteinases from bacilli, actinomycetes, fungi and plants which form a subfamily of thiol-dependent serine proteinases within the family of subtilisins.  相似文献   

19.
The specificity of the cyclic AMP-dependent protein kinase was examined using two series of dodecapeptides as substrates. One series consisted of peptides of the general sequence (Gly)x-Arg-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y = 6. The other series consisted of peptides of the sequence (Gly)x-Lys-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y was again equal to 6. The peptides Gly-Gly-Gly-Gly-Gly-Gly-Gly-Arg-Arg-Ser-Leu-Gly and Gly-Gly-Gly-Gly-Gly-Gly-Gly-Lys-Arg-Ser-Leu-Gly were also examined. In the series in which the adjacent arginines were located various distances from the serine, the substrate for which the enzyme clearly exhibited optimal kinetic constants contained one amino acid residue between the basic residues and serine. Direct binding studies of N alpha-[3H]acetyl peptides to catalytic subunit of cyclic AMP-dependent protein kinase revealed a correlation between binding affinity and the ability to serve as substrate for the enzyme. In the second series in which the adjacent basic amino acids were Lys-Arg, optimal kinetic constants were again obtained when these residues were separated from serine by a single amino acid. This latter result was surprising in view of phosphorylation site sequences in the known physiologically significant protein substrates for the kinase, since those containing Lys-Arg all contain two amino acids between these residues and serine.  相似文献   

20.
用PCR随机诱变方法,研究氨基酸置换对耐热邻苯二酚2,3-双加养酶性质的影响。比较分析了突变体ro229Ser和Glu243Gly与野生型酶的酶学性质。结果显示点突变Pro229→Ser或Glu243→Gly并未改变酶的最适反应温度(均为60℃);突变体Pro229Ser(Kcat/Km=4.89±0.01×10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号