首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method of sample analysis is presented which is based on fitting a joint distribution of photon count numbers. In experiments, fluorescence from a microscopic volume containing a fluctuating number of molecules is monitored by two detectors, using a confocal microscope. The two detectors may have different polarizational or spectral responses. Concentrations of fluorescent species together with two specific brightness values per species are determined. The two-dimensional fluorescence intensity distribution analysis (2D-FIDA), if used with a polarization cube, is a tool that is able to distinguish fluorescent species with different specific polarization ratios. As an example of polarization studies by 2D-FIDA, binding of 5'-(6-carboxytetramethylrhodamine) (TAMRA)-labeled theophylline to an anti-theophylline antibody has been studied. Alternatively, if two-color equipment is used, 2D-FIDA can determine concentrations and specific brightness values of fluorescent species corresponding to individual labels alone and their complex. As an example of two-color 2D-FIDA, binding of TAMRA-labeled somatostatin-14 to the human type-2 high-affinity somatostatin receptors present in stained vesicles has been studied. The presented method is unusually accurate among fluorescence fluctuation methods. It is well suited for monitoring a variety of molecular interactions, including receptors and ligands or antibodies and antigens.  相似文献   

2.
ABSTRACT

G protein-coupled receptors (GPCRs) represent the single largest molecular target of therapeutic drugs currently on the market, and are also the most common target in high throughput screening assays designed to identify potential new drug candidates. A large percentage of these assays are now formatted as radioligand binding assays. Fluorescence polarization ligand binding assays can offer a non-rad alternative to radioligand binding assays. In addition, fluorescence polarization assays are a homogenous format that is easy to automate for high throughput screening. We have developed a series of peptide ligands labeled with the fluorescent dye BODIPY® TMR whose binding to GPCRs can be detected using fluorescence polarization methodology. BODIPY® TMR has advantages over the more commonly used fluorescein dye in high throughput screening (HTS) assays due to the fact that its excitation and emission spectra are red-shifted approximately 50 nm relative to fluorescein. Assays based on BODIPY® TMR ligands are therefore less susceptible to interference from tissue auto-fluorescence in the assay matrix, or the effects of colored or fluorescent compounds in the screening libraries. A series of BODIPY® TMR labeled peptides have been prepared that bind to a range of GPCRs including melanin concentrating hormone, bradykinin, and melanocortin receptors. Conditions have been optimized in order to utilize a comparable amount of receptor membrane preparation as is used in a radioligand binding assay. The assays are formatted in 384-well microplates with a standard volume of 40 µL. We have compared the assays across the different fluorescence polarization (FP) readers available to determine the parameters for each instrument necessary to achieve the required precision.  相似文献   

3.
G protein-coupled receptors (GPCRs) represent the single largest molecular target of therapeutic drugs currently on the market, and are also the most common target in high throughput screening assays designed to identify potential new drug candidates. A large percentage of these assays are now formatted as radioligand binding assays. Fluorescence polarization ligand binding assays can offer a non-rad alternative to radioligand binding assays. In addition, fluorescence polarization assays are a homogenous format that is easy to automate for high throughput screening. We have developed a series of peptide ligands labeled with the fluorescent dye BODIPY TMR whose binding to GPCRs can be detected using fluorescence polarization methodology. BODIPY TMR has advantages over the more commonly used fluorescein dye in high throughput screening (HTS) assays due to the fact that its excitation and emission spectra are red-shifted approximately 50 nm relative to fluorescein. Assays based on BODIPY TMR ligands are therefore less susceptible to interference from tissue auto-fluorescence in the assay matrix, or the effects of colored or fluorescent compounds in the screening libraries. A series of BODIPY TMR labeled peptides have been prepared that bind to a range of GPCRs including melanin concentrating hormone, bradykinin, and melanocortin receptors. Conditions have been optimized in order to utilize a comparable amount of receptor membrane preparation as is used in a radioligand binding assay. The assays are formatted in 384-well microplates with a standard volume of 40 microL. We have compared the assays across the different fluorescence polarization (FP) readers available to determine the parameters for each instrument necessary to achieve the required precision.  相似文献   

4.
The combination of temporal and spectral resolution in fluorescence microscopy based on long-lived luminescent labels offers a dramatic increase in contrast and probe selectivity due to the suppression of scattered light and short-lived autofluorescence. We describe various configurations of a fluorescence microscope integrating spectral and microsecond temporal resolution with conventional digital imaging based on CCD cameras. The high-power, broad spectral distribution and microsecond time resolution provided by microsecond xenon flashlamps offers increased luminosity with recently developed fluorophores with lifetimes in the submicrosecond to microsecond range. On the detection side, a gated microchannel plate intensifier provides the required time resolution and amplification of the signal. Spectral resolution is achieved with a dual grating stigmatic spectrograph and has been applied to the analysis of luminescent markers of cytochemical specimens in situ and of very small volume elements in microchambers. The additional introduction of polarization optics enables the determination of emission polarization; this parameter reflects molecular orientation and rotational mobility and, consequently, the nature of the microenvironment. The dual spectral and temporal resolution modes of acquisition complemented by a posteriori image analysis gated on the spatial, spectral, and temporal dimensions lead to a very flexible and versatile tool. We have used a newly developed lanthanide chelate, Eu-DTPA-cs124, to demonstrate these capabilities. Such compounds are good labels for time-resolved imaging microscopy and for the estimation of molecular proximity in the microscope by fluorescence (luminescence) resonance energy transfer and of molecular rotation via fluorescence depolarization. We describe the spectral distribution, polarization states, and excited-state lifetimes of the lanthanide chelate crystals imaged in the microscope.  相似文献   

5.
Protein-DNA binding assays have been used in a variety of fields from fundamental studies regarding the binding process itself, to serving as probes for the detection, quantification and separation of target analytes. These assays have been used for the study of protein-DNA complex stoichiometry, the detection of DNA damage, and real-time separation of free and bound complexes by electrophoretic mobility. Synthetic DNA oligonucleotides, known as aptamers, have been increasingly used for affinity binding assays to proteins, as well as for separation studies and as biosensors. Recent advances have been made in protein-DNA binding assays using capillary electrophoresis, laser-induced fluorescence, fluorescence polarization, molecular beacons, and affinity chromatography.  相似文献   

6.
A combined fluorescence-photochrome approach was used for investigation of the molecular dynamics antiDNP antibody binding site and its cavity. A 4-(N-2,4-dinitrophenylamino)-4'-(N,N'-dimethylamino)stilbene (StDNP) fluorescence DNP analog was incorporated into the antibody binding site. This was followed by measurements of fluorescence and photochrome parameters such as the StDNP excitation and emission spectra, fluorescence lifetime, steady-state and time-resolved fluorescence polarization, kinetics of trans-cis and cis-trans photoisomerization, and fluorescence quenching by nitroxide radicals freely diffused in solution. In parallel, computational modeling studies on the location and dynamics of DNP/TEMPO spin-label (NslDNP) and StDNP guests within a model of the binding site were performed. When all the experimental evidence is considered (including data from the antibody X-ray study), one can conclude that wobbling of the Trp 91 L/Trp 96 H binding-site.bound-hapten moiety (StDNP), can be responsible for the label's nanosecond dynamics monitored by fluorescence polarization techniques. A similar conclusion may be reached as a result of data analysis on NslDNP mobility within the antibody binding site. The mobility of Trp 91 L and Trp 96 H moieties provides the induced fit needed for effective stacking and release of the DNP epitope. Analysis of the above-mentioned data allows one to explore the mechanism of the probe's movement within the binding site and enables one to discuss the local dynamics of the binding site region. The combined fluorescence-photochrome approach can be used for investigation of local medium molecular dynamics in the immediate vicinity of specific sites of proteins and nucleic acids, as well as for other biologically important structures and synthetic analogues.  相似文献   

7.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000. In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10(-7) or 2 . 10(-7), respectively. The fluorescence emission (lambdamax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with k1 = 2.4 . 10(4) M-1 . s-1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with K-1 = 3 . 10(-3) S-1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed. The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another. The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 10(6) M-1 . s-1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

8.
The ability to visualize myelin is important in the diagnosis of demyelinating disorders and the detection of myelin-containing nerves during surgery. The development of myelin-selective imaging agents requires that a defined target for these agents be identified and that a robust assay against the target be developed to allow for assessment of structure-activity relationships. We describe an immunohistochemical analysis and a fluorescence polarization binding assay using purified myelin basic protein (MBP) that provides quantitative evidence that MBP is the molecular binding partner of previously described myelin-selective fluorescent dyes such as BMB, GE3082, and GE3111.  相似文献   

9.
The antagonist carazolol has been used as a fluorescent probe for the binding site of the beta-adrenergic receptor (beta AR). The fluorescence properties of carazolol are dominated by the emission of the carbazole group, with the fine structure of the spectrum, but not the quantum yield, sensitive to the environment of the probe. The fluorescence emission spectrum of the bound probe is consistent with an extremely hydrophobic environment in the binding site of the receptor. Binding of carazolol to the purified beta AR increases the polarization of the fluorophore. Exposure to collisional quenchers has demonstrated the bound carazolol to be completely inaccessible to the solvent. Furthermore, the fluorescence of bound carazolol is not quenched by exposure to sodium nitrite, a F?rster energy acceptor which has an R0 value of 11.7 A with carazolol. Thus, physical analysis of the binding site of the beta AR by carazolol fluorescence indicates that the antagonist binds to the beta AR in a rigid hydrophobic environment which is buried deep within the core of the protein.  相似文献   

10.
Localization of the ganglioside-binding site of fibronectin   总被引:10,自引:0,他引:10  
It has been demonstrated via biological assays that fibronectin possesses a receptor for gangliosides that is involved in cell adhesion and restoration of the normal morphology of transformed cells. In this study, fluorescence polarization has been employed to monitor the binding of ganglioside oligosaccharide to fibronectin. Parameters involved in ganglioside oligosaccharide binding to fibronectin are described and compared to the interaction of heparin with fibronectin. A Kd of 1.4 X 10(-8) mol/liter has been calculated, and it is demonstrated that labeled ganglioside oligosaccharides can be eluted from fibronectin with either unlabeled ganglioside oligosaccharides or 4 M urea. Using the fluorescence polarization assay developed in this study for measurement of ganglioside binding to fibronectin, it is demonstrated that gangliosides bind to the 31,000-dalton amino terminal heparin-binding domain of fibronectin. A ganglioside-Sepharose affinity column has been constructed which specifically binds the 31,000-dalton amino terminal fragment of fibronectin. The localization of the ganglioside receptor to the amino terminal domain of fibronectin indicates that the ganglioside receptor is distinct from the putative fibronectin cell surface receptor which is located near the center of the fibronectin molecule.  相似文献   

11.
Recognition of double stranded ribonucleic acid is a critical event in many biological pathways such as trafficking, editing and maturation of mRNA, interferon antiviral response and RNA interference. In the context of probing double stranded RNA binding small molecules, the interaction of the antitumor protoberberine alkaloid coralyne with double stranded poly(A) has been studied by various biophysical techniques. Typical hypochromic and bathochromic shifts in the absorption spectrum and appreciable quenching of the intrinsic fluorescence of coralyne indicated the strong affinity of coralyne to poly(A). The corresponding intrinsic binding constant evaluated from Scatchard analysis was in the order of 10(5) M(-1). The strong binding was further characterized by significant polarization of the alkaloid fluorescence and stabilization of poly(A) helix against thermal strand separation. The binding process was manifested by remarkable perturbation of the intrinsic circular dichroic spectrum of poly(A) with concomitant generation of optical activity in the bound alkaloid molecules that are otherwise achiral. Job plot analysis showed the binding stoichiometry of the interaction process to be two base pairs per alkaloid molecule. The energetics of the strong interaction was studied by isothermal titration and differential scanning calorimetric techniques that suggested the binding to be exothermic and favoured by both negative enthalpy and positive entropy changes. All these results, together with the Stern-Volmer quenching experiment in fluorescence, revealed the molecular details of the intercalation of coralyne into poly(A) duplex leading to its potential use as an agent in gene regulation in eukaryotic cells.  相似文献   

12.
Fluorescence lifetimes of 'large (mol. wt. 120,000) and 'small' (mol. wt. 60,000) phytochromes isolated from oat and rye seedlings grown in the dark have been measured at 199 K and 298 K. Phytochrome model compounds have also been studied by phase modulation fluorometrically at 77 K for comparison with lifetime data for phytochrome. It was found that the fluorescence lifetime of 'large' phytochrome was significantly shorter than that of 'small' phytochrome and its chromophore models. The phytochrome chromophore of Pr form has been analyzed by fluorescence polarization, CD, and molecular orbital methods. The fluorescence excitation polarization of 'small' phytochrome and the chromophore model in buffer/glycerol mixture (3 : 1, v/v) at 77 K is very hight (0.4) at the main absorption band and is negative (--0.1) and close to 0 in the near ultraviolet band, respectively. Analyses of the spectroscopic data suggest that the chromophore conformation of Pr and Pfr forms of phytochrome are essentially identical. The induced ellipticity of 'large' rye phytochrome in the blue and near ultraviolet regions was found to be significantly higher than that of 'small' phytochrome, indicating that the binding interaction between the phytochrome chromophore and apoprotein is much tighter in the former than in the latter. In addition, the excitation energy transfer does occur from Trp residue(s) to the chromophore in 'large' phytochrome but not in 'small' Pr. This illustrates one feature of the role played by the large molecular weight apoprotein in the binding site interactions and primary photoprocesses of Pr. Finally, a plausible model for the primary photoprocesses and the mechanism of phytochrome interactions triggered by the Pr leads to Pfr phototransformation have been proposed on the basis of the above results.  相似文献   

13.
The molecular mobility of the fluorescent probe, N-(carboxymethyl)imide of 4-(dimethylamino)naphthalic acid (K-35) in three types of binding sites on a human serum albumin (HSA) molecule has been studied. The time-resolved decay of K-35 polarized fluorescence in HSA has been studied and it has been shown that probe molecules bound to different sites have different fluorescence decay time, which poses problems in the interpretation of polarization decay. However, it has been found that, in the case of rather slow thermal rotation of the probe, the decay of each of vertical and horizontal polarized fluorescence components can be approximated by three exponentials corresponding to three types of binding sites. The mobility of the probe in different sites was estimated. The mobility was different but hindered by tens of times in all sites as compared with the rotation of K-35 in water. The slowest motion occurred in the sites of the first type localized in the region of the well known first drug-binding site: here the rotational correlation was close to 72 ns or more. In the sites of the second type, the time was about 40 ns, and in the sites of the third type, the time was about 10 ns. It was found that the higher the rotation rate, the higher the fluorescence quenching rate. Probably, it is this motion that is responsible for different fluorescence decay times in different HSA sites.  相似文献   

14.
The molecular mobility of the fluorescent probe, N-(carboxymethyl)imide of 4-(dimethylamino)naphthalic acid (K-35), in three types of binding site on a human serum albumin (HSA) molecule has been studied. Study of the time-resolved decay of K-35 polarized fluorescence in HSA has shown that probe molecules bound to different sites have different fluorescence decay times, which poses problems in interpreting the polarization curves. However, it has been found that, in the case of rather slow thermal rotation of the probe, the decay of the vertical and the horizontal components of polarized fluorescence can each be approximated with three exponentials corresponding to three types of binding site. The mobility of the probe in different sites was estimated. The mobility was different but in all cases hindered by tens of times relative to the rotation of K-35 in water. The slowest motion occurred in the sites of the first type localized in the region of the well known drug site I: there the rotational correlation time was at least 72 ns. In the sites of the second type, this time was about 40 ns, and in the sites of the third type, about 10 ns. The faster was the rotation, the higher was the fluorescence quenching rate. Probably, it is this motion that is responsible for different fluorescence decay times in different HSA sites.  相似文献   

15.
DNA interaction with cholesterol at various lipid concentrations has been investigated by the fluorescent probes method. It has been shown that the intensity of acridine orange fluorescence in the DNA-cholesterol complex decreases at 24 micrograms/ml cholesterol and at 45 micrograms/ml it increases. The number of binding sites and the degree of polarization of fluorescence change simultaneously. Binary mechanism of cholesterol binding with DNA has been suggested: surface binding takes place at low concentrations, intercalation--at high lipid concentrations.  相似文献   

16.
Activation of nonspecific lipase (EC 3.1.1.-) by bile salts   总被引:1,自引:0,他引:1  
The enzyme nonspecific lipase (EC 3.1.1.-) from rat pancreas has been isolated and its amino acid composition determined. The amino acid composition confirms more indirect evidence that nonspecific lipase is not the same enzyme as cholesteryl ester hydrolase. Activation of the enzymatic activity by bile salts has been studied by equilibrium dialysis, gel filtration, light scattering, circular dichroism and fluorescence polarization. The binding of bile salt by the enzyme is saturable and is associated with a conformational change. Upon binding cholate, the protein experiences a decrease in beta-structure with no significant change in alpha-helix content, an increase in apparent Stokes radius, a decrease in light scattering properties, and a slight decrease in polarization of the intrinsic tryptophan fluorescence. Attachment of bile salt is associated with decreased reactivity of essential sulfhydryl groups, but no detectable change in reactivity of amino groups. A change to a more nearly spherical shape upon binding bile salt would be consistent with the experimental observations, but the exact sites of binding remain uncertain.  相似文献   

17.
Calculations have been made to allow corrections for instrumental errors in the measurement of fluorescence and polarization coefficient. These errors are due to differences in transmittivities of the instruments for the horizontal and vertical components of the light. The relative error made in the quantum efficiency determination can be as large as 12%. When natural light is used for polarization measurement the relative error can be 15%. Special attention has been given to the case in which polarization measurements are used for measurements of binding of small molecules to macromolecules.  相似文献   

18.
Quercetin, a ubiquitous flavanoid, has numerous pharmacological effects, such as antioxidant and antitumor. Previous studies showed nucleic acids were the potential biological targets for antitumor medicine. For exploring the mechanism of DNA‐target medicine, the interaction between quercetin and calf thymus DNA was studied based on the method of spectrometry and simulation in our study. Firstly, the interaction between quercetin and calf thymus DNA was confirmed by fluorescence spectrometry. Furthermore, circular dichroism, fluorescence polarization, competitive displacement assay, and salt concentration dependence assay were applied to search the interaction mode of quercetin‐calf thymus DNA, which proved the existence of groove binding and electrostatic interaction. Meanwhile, quenching constant Ksv, binding constant Ka and the number of binding sites n was calculated, inferring that the fluorescence quenching occurred by static quenching process, and the main acting force was hydrogen bond. Finally, molecular docking was used to simulate and analyze the interaction between quercetin and calf thymus DNA.  相似文献   

19.
In the last few years, fluorescence polarization (FP) has been applied to the development of robust, homogeneous, high throughput assays in molecular recognition research, such as ligand-protein interactions. Recently, this technology has been applied to the development of homogeneous tyrosine kinase assays, since there are high-affinity anti-phosphotyrosine antibodies available. Unlike tyrosine kinases, application of FP to assay development for serine/threonine kinases has been impeded because of lack of high-affinity anti-phosphoserine/threonine antibodies. In the present study, we report the discovery of a high-affinity, monoclonal anti-phosphoserine antibody, 2B9, with a Kd of 250 +/- 34 pM for a phosphoserine-containing peptide tracer, fluorescein-RFARKGS(PO(4))LRQKNV. Our data suggest that 2B9 is selective for fluorescein-RFARKGS(PO(4))LRQKNV. The antibody and tracer have been used for the development of a competitive FP assay for protein kinase C (PKC) in 384-well plates. Phosphatidylserine, which enhances the kinase activity of PKC in a Ca(2+)-dependent manner and has a structure similar to that of phosphoserine, did not interfere with binding of the peptide tracer to the antibody in the FP assay. The data indicate that the FP assay is more sensitive and robust than the scintillation proximity assay for PKC. The FP assay developed here can be used for rapid screening of hundreds of thousands of compounds for discovery of therapeutic leads for PKC-related diseases.  相似文献   

20.
Bacia K  Schwille P 《Nature protocols》2007,2(11):2842-2856
Dual-color fluorescence cross-correlation spectroscopy (FCCS) allows for the determination of molecular mobility and concentrations and for the quantitative analysis of molecular interactions such as binding or cleavage at very low concentrations. This protocol discusses considerations for preparing a biological system for FCCS experiments and offers practical advice for performing FCCS on a commercially available setup. Although FCCS is closely related to two-color confocal microscopy, critical adjustments and test measurements are necessary to establish successful FCCS measurements, which are described in a step-by-step manner. Moreover, we discuss control experiments for a negative cross-correlation artifact, arising from a lack of detection volume overlap, and a positive artifact, arising from cross-talk. FCCS has been applied to follow molecular interactions in solutions, on membranes and in cells and to analyze dynamic colocalization during intracellular transport. It is a technique that is expected to see new applications in various fields of biochemical and cell biological research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号