首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
As a model of phospholipid bilayers in solid an oriented multilayer film (built-up film) of L-α-dipalmitoyl phosphatidylcholine (DPPC) was prepared from the monolayer by the dipping method. Structural analysis has been carried out by measuring infrared dichroism of the built-up film. The results were compared with those of the built-up film of L-α-dipalmitoyl phosphatidylethanolamine (DPPE). The tilting of the hydrocarbon chains is larger for DPPC than for DPPE. The orientation of the bisector of the two non-esterified PO bonds is closer to the film plane for DPPC than for DPPE. The strong hydrogen bonding interaction between the polar head groups was shown for DPPE, but not for DPPC. These features resemble the structural differences between dilauroyl phosphatidylethanolamine (DLPE) and dimyristoryl phosphatidylcholine (DMPC) in crystals. The hydrogen bonding interaction of DPPE found in solid remains even in the presence of water, namely, in the gel state. More closed packing of the hydrocarbon chains of solid DPPE than DPPC in solid was concluded on the basis of infrared and Raman spectra.  相似文献   

2.
J Katsaras  D S Yang    R M Epand 《Biophysical journal》1992,63(4):1170-1175
X-ray diffraction has been applied to determine the various tilt angles and directions (if any) which can be assumed by oriented gel phase multilayers of dipalmitoyl phosphatidylcholine (DPPC) as a function of hydration. We report for the first time that oriented DPPC multilayers with a repeat spacing (d-spacing) of 55.2A at 25 degrees C and 0% relative humidity (RH) have hydrocarbon chains tilted at an angle theta of 21.5 degrees with respect to the bilayer normal. In addition, the chains are tilted along one of the bisectors (omega = 0 degrees) of the hexagonal lattice (8 wide-angle maxima, 2 unique), a phase not previously reported in DPPC studies. At 100% RH, the chain tilt angle and d-spacing increased to approximately 29.0 degrees and 58.9A, respectively. Since at 100% RH only 4 wide-angle maxima are observed, we analyze the data on the assumption that the hydrocarbon chains may rotate independently of the hexagonal lattice (omega = 0-30 degrees), at a fixed chain tilt angle theta (Stamatoff, J.B., et al. 1979. Biophys. J. 25:253-262). The largest observed angle phi made by the wide-angle maxima with the equator is 29.5 degrees corresponding to a theta of approximately 32.6 degrees (omega avg. = 24 degrees) and the sample having a d-spacing of 64.0 A (excess water condition). Finally, theta remains relatively constant (approximately 21.5 degrees) up to a RH of approximately 45% and a d-spacing of 57.8A, after which, with increases in RH, theta increases to a maximum of 32.6 degrees.  相似文献   

3.
A cooperative alignment of lipid chains in dipalmitoyl phosphatidylcholine (DPPC) bilayers was detected by using oriented multilayers containing small amounts of spin-labeled phosphatidylcholine. It is shown that a significant angle of tilt exists along the entire length of the lipid chains in DPPC. This behavior is compared with that of the more complex egg phosphatidylcholine bilayers. The lipid chains do not have the alignment of a single crystal but evidently exist in domains consisting of either clusters within a bilayer or successive layers out of register in the stacked multilayer.  相似文献   

4.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A new method is introduced for the detection of chain interdigitation in phospholipid bilayers. The same method is used to measure the hydrocarbon tilt in the dipalmitoylphosphatidylcholine membranes as a function of the bulk concentration of the interdigitation-inducing solutes, such as ethanol. The hydrocarbon tilt in the phosphatidylcholine bilayers is demonstrated to be limited to angles below approx. 51 degrees. The need for higher tilt values leads to bilayer interdigitation. Solute-induced chain interdigitation is shown to be a cooperative process provoked by the excessively large lateral repulsion in the interfacial region and the concomitant excessive chain tilt. Ethanol-induced phosphatidylcholine interdigitation, for example, proceeds via interdigitated domains formation and finally gives rise to the bilayers with fully intercalated chains tilted by at least 30 degrees (and sometimes as much as 50 degrees) with respect to the membrane normal.  相似文献   

6.
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes.  相似文献   

7.
SP-C, a pulmonary surfactant-specific protein, aids the spreading of the main surfactant phospholipid L-alpha-dipalmitoylphosphatidylcholine (DPPC) across air/water interfaces, a process that has possible implications for in vivo function. To understand the molecular mechanism of this process, we have used external infrared reflection-absorption spectroscopy (IRRAS) to determine DPPC acyl chain conformation and orientation as well as SP-C secondary structure and helix tilt angle in mixed DPPC/SP-C monolayers in situ at the air/water interface. The SP-C helix tilt angle changed from approximately 24 degrees to the interface normal in lipid bilayers to approximately 70 degrees in the mixed monolayer films, whereas the acyl chain tilt angle of DPPC decreased from approximately 26 degrees in pure lipid monolayers (comparable to bilayers) to approximately 10 degrees in the mixed monolayer films. The protein acts as a "hydrophobic lever" by maximizing its interactions with the lipid acyl chains while simultaneously permitting the lipids to remain conformationally ordered. In addition to providing a reasonable molecular mechanism for protein-aided spreading of ordered lipids, these measurements constitute the first quantitative determination of SP-C orientation in Langmuir films, a paradigm widely used to simulate processes at the air/alveolar interface.  相似文献   

8.
The distribution of ganglioside in supported lipid bilayers has been studied by atomic force microscopy. Hybrid dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylethanolamine (DPPE) and (2:1 DPPC/cholesterol)/DPPE bilayers were prepared using the Langmuir Blodgett technique. Egg PC and DPPC bilayers were prepared by vesicle fusion. Addition of ganglioside GM1 to each of the lipid bilayers resulted in the formation of heterogeneous surfaces that had numerous small raised domains (30--200 nm in diameter). Incubation of these bilayers with cholera toxin B subunit resulted in the detection of small protein aggregates, indicating specific binding of the protein to the GM1-rich microdomains. Similar results were obtained for DPPC, DPPC/cholesterol, and egg PC, demonstrating that the overall bilayer morphology was not dependent on the method of bilayer preparation or the fluidity of the lipid mixture. However, bilayers produced by vesicle fusion provided evidence for asymmetrically distributed GM1 domains that probably reflect the presence of ganglioside in both inner and outer monolayers of the initial vesicle. The results are discussed in relation to recent inconsistencies in the estimation of sizes of lipid rafts in model and natural membranes. It is hypothesized that small ganglioside-rich microdomains may exist within larger ordered domains in both natural and model membranes.  相似文献   

9.
The effect of cholesterol on the structure of phosphatidylcholine bilayers was investigated by X-ray diffraction methods. Electron density profiles at 5 Å resolution along with chain tilt and chain packing parameters were obtained and compared for phosphatidylcholine/cholesterol bilayers and for pure phosphatidylcholine bilayers in both the gel and liquid crystalline states. The cholesterol in the bilayer was localized by noting the position of discrete elevations in the electron density profiles. Cholesterol can either increase or decrease the width of the bilayer depending on the physical state and chain length of the lipid before the introduction of cholesterol. For saturated phosphatidylcholines containing 12–16 carbons per chain, cholesterol increases the width of the bilayer as it removes the chain tilt from gel state lipids or increases the trans conformations of the chains for liquid crystalline lipids. However, cholesterol reduces the width of 18 carbon chain bilayers below the phase transition temperature as the long phospholipid chains must deform or kink to accomodate the significantly shorter cholesterol molecule. Although cholesterol has a marked effect on hydrocarbon chain organization, it was found that, within the resolution limits of the data, the phosphatidylcholine head group conformation is unchanged by the addition of cholesterol to the bilayer. The head group is oriented parallel to the plane of the bilayer for phosphatidylcholine in the gel and liquid crystalline states and this orientation is not changed by the addition of cholesterol.  相似文献   

10.
J F Nagle 《Biophysical journal》1993,64(4):1110-1112
It is shown how the dichroic ratio of the symmetric methylene stretching modes depends upon both the rotational order of hydrocarbon chains about their long axis and the tilting of the long chains with respect to the bilayer normal. Use of a recent determination of the tilt angle from x-ray measurements together with recent dichroic infrared data yields a rotational order parameter g = -0.30 compared to g = 0 for complete disorder and g = +/- 1 for complete order. The negative value of g corresponds to a preference for the plane defined by the chain carbons to be more perpendicular than parallel to the plane defined by the tilt direction and the bilayer normal.  相似文献   

11.
The tilt angle of the hydrocarbon chains to the planes of a dipalmitoryl lecithin single bilayer and multilayers were estimated by the asymmetry of the electron diffraction patterns of respective hydrated specimens. The chains in a single bilayer were found to be perpendicular to the bilayer plane, whereas the chains in the multilayers were found to be tilted with respect to the normal of the plane. Thermal analysis data also supported this conclusion.  相似文献   

12.
Structure of Sphingomyelin Bilayers: A Simulation Study   总被引:3,自引:1,他引:2       下载免费PDF全文
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC.  相似文献   

13.
Lateral electric conductivity of mica-supported lipid monolayers and of the corresponding lipid bilayers has been studied by means of scanning tunneling microscopy (STM). The surface of freshly cleaved mica itself was found to be conductive when exposed to humid air. Lipid monolayers were transferred onto such a surface by means of the Langmuir-Blodgett technique, which makes the mica surface hydrophobic and suppresses the electric current along the surface in the experimentally accessible humidity (5-80%) and applied voltage (0-10 V) range. This is true for dipalmitoylphosphatidylethanolamine (DPPE) as well as dipalmitoylphosphatidylcholine (DPPC) monolayers. Repeated deposition of DPPC layers by means of the Langmuir-Blodgett LB technique does not lead to the formation of a stable surface-supported bilayer because of the high hydrophilicity of the phosphatidylcholine headgroups that causes DPPC/DPPC bilayers to peel off the supporting surface during the sample preparation. In contrast to this, a DPPE or a DPPC monolayer on top of a DPPE monolayer gives rise to a rather stable mica-supported bilayer that can be studied by STM. Electric currents between 10 and 100 fA, depending on the ambient humidity, flow along the DPPE bilayer surface, in the humidity range between 35 and 60%. The DPPC surface, which is more hydrophilic, is up to 100 times more conductive under comparable conditions. Anomalous high lateral conductivity thus depends on, and probably proceeds via, the surface-adsorbed water layers. The prominence of ambient humidity and surface hydrophilicity on the measured lateral currents suggests this.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
DSC and (1H and 31P) NMR measurements are used to investigate the perturbation caused by the keratolytic drug, salicylic acid (SA) on the physicochemical properties of the model membranes. Model membranes (in unilamellar vesicular (ULV) form) in the present studies are prepared with the phospholipids, dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), dipalmitoyl phosphatidic acid (DPPA) and mixed lipid DPPC-DPPE (with weight ratio, 2.5:2.2). These lipids have the same acyl (dipalmitoyl) chains but differed in the headgroup. The molar ratio of the drug to lipid (lipid mixture), is in the range 0 to 0.4. The DSC and NMR results suggest that the lipid head groups have a pivotal role in controlling (i) the behavior of the membranes and (ii) their interactions with SA. In the presence of SA, the main phase transition temperature of (a) DPPE membrane decreases, (b) DPPA membrane increases and (c) DPPC and DPPC-DPPE membranes are not significantly changed. The drug increases the transition enthalpy (i.e., acyl chain order) in DPPC, DPPA and DPPC-DPPE membranes. However, the presence of the drug in DPPC membrane formed using water (instead of buffer), shows a decrease in the transition temperature and enthalpy. In all the systems studied, the drug molecules seem to be located in the interfacial region neighboring the glycerol backbone or polar headgroup. However, in DPPC-water system, the drug seems to penetrate the acyl chain region also.  相似文献   

16.
The thermotropic phase behavior of aqueous dispersions of dipalmitoylphosphatidylcholine (DPPC) and its 1,2-dialkyl, 1-acyl 2-alkyl and 1-alkyl 2-acyl analogs was examined by differential scanning calorimetry, and the organization of these molecules in those hydrated bilayers was studied by Fourier transform infrared spectroscopy. The calorimetric data indicate that substitution of either or both of the acyl chains of DPPC with the corresponding ether-linked hydrocarbon chain results in relatively small increases in the temperature (< 4 degrees C) and enthalpy (< 1 kcal/mol) of the lipid chain-melting phase transition. The spectroscopic data reveal that replacement of one or both of the ester-linked hydrocarbon chains of DPPC with its ether-linked analog causes structural changes in the bilayer assembly, which result in an increase in the polarity of the local environments of the phosphate headgroups and of the ester carbonyl groups at the bilayer polar/apolar interface. The latter observation is unexpected, given that ester linkages are considered to be intrinsically more polar that ether linkages. This finding cannot be satisfactorily rationalized unless the conformation of the glycerol backbones of the analogs containing ether-linked hydrocarbon chains differs significantly from that of diacyl glycerolipids such as DPPC. A comparison of the alpha-methylene scissoring bands and the methylene wagging band progressions of these lipids with the corresponding absorption bands of specifically chain-perdeuterated analogs of DPPC also supports the conclusion that replacement of the ester-linked hydrocarbon chains of DPPC with the corresponding ether-linked analog induces conformational changes in the lipid glycerol backbone. The suggestion that the conformation of glycerol backbones in the alkyl-acyl and dialkyl derivatives of DPPC differs from that of the naturally occurring 1,2-diacyl glycerolipid suggests that mono- and di-alkyl glycerolipids may not be good models of their diacyl analogs. These results, and previously published evidence that DPPC analogs with ether-linked hydrocarbon chains spontaneously form chain-interdigitated gel phases at low temperatures, clearly indicate that the properties of lipid bilayers can be substantially altered by small changes in the chemical structures of their polar/polar interfaces, and highlight the critical role of the interfacial region as a determinant of the structure and organization of lipid assemblies.  相似文献   

17.
The interaction between 1-decyloxymethyl-3-carbamoylpyridinium salts (PS-X) and two types of vesicles (multilamellar vesicle and sonicated vesicle) was investigated. Vesicles were formed from two classes of phospholipids: 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (DPPE). The PS-X salts used had nitrate, perchlorate, tetrafluoroborate and halides as counterions. Measurements were carried out using differential scanning calorimetry and 1H NMR. All studied compounds decreased the main phase transition temperatures of both DPPC and DPPE bilayers. All of them also decreased the transition enthalpy of DPPC bilayers, however they had a dual effect on the transition enthalpy of DPPE. Namely, at low concentrations the PS-X salts studied significantly increased the main transition enthalpy of DPPE (perchlorate and tetrafluoroborate the least among them) and decreased it at higher concentrations. We have suggested that surfactant rich and pure domains form on the DPPE bilayer in the presence of PS-ClO4, PS-BF4 and PS-NO3, whereas they form on DPPC bilayer only in the presence of PS-ClO4. Results are discussed in terms of counterion molecular geometry and the ability of amide group to form hydrogen bonds with lipids.  相似文献   

18.
Membrane bilayers of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) adsorbed to a freshly cleaved mica substrate have been imaged by Atomic Force Microscopy (AFM). The membranes were mounted for imaging by two methods: (a) by dialysis of a detergent solution of the lipid in the presence of the substrate material, and (b) by adsorption of lipid vesicles onto the substrate surface from a vesicle suspension. The images were taken in air, and show lipid bilayers adhering to the surface either in isolated patches or in continuous sheets, depending on the deposition conditions. Epifluorescence light-microscopy shows that the lipid is distributed on the substrate surfaces as seen in the AFM images. In some instances, when DPPE was used, whole, unfused vesicles, which were bound to the substrate, could be imaged by the AFM. Such membranes should be capable of acting as natural anchors for imaging membrane proteins by AFM.  相似文献   

19.
A method originally proposed by Snyder and Poore [(1973) Macromolecules 6, 708-715] as a specific probe of trans-gauche isomerization in hydrocarbon chains and recently applied [Mendelsohn et al. (1989) Biochemistry 28, 8934-8939] to the quantitative determination of phospholipid acyl chain conformational order is utilized to monitor the effects of cholesterol at various depths in dipalmitoylphosphatidylcholine (DPPC) bilayers. The method is based on the observation that the CD2 rocking modes from the acyl chains of specifically deuterated phospholipids occur at frequencies in the Fourier transform infrared spectrum which depend upon the local geometry (trans or gauche) of the C-C-C skeleton surrounding a central CD2 group. Three specifically deuterated derivatives of DPPC, namely, 4,4,4',4'-d4 DPPC (4-d4 DPPC), 6,6,6',6'-d4 DPPC (6-d4 DPPC), and 12,12,12',12'-d4 DPPC (12-d4 DPPC), have been synthesized, and the effects of cholesterol addition at 2:1 DPPC/cholesterol (mol:mol) on acyl chain order at various temperatures have been determined. At 48 degrees C, cholesterol inhibits gauche rotamer formation by factors of approximately 9 and approximately 6 at positions 6 and 4, respectively, of the acyl chains, thus demonstrating a strong ordering effect in regions of the bilayer where the sterol rings are presumed to insert parallel to the DPPC acyl chains. In contrast, the ability of the sterol to order the acyl chains is much reduced at the 12-position. The sterol demonstrates only a slight disordering of phospholipid gel phases. Finally, the contributions of different classes of gauche conformers to the spectra have been determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The chain dynamics and the thermotropic phase behavior of sterically stabilized liposomes obtained introducing in the host bilayer matrix of DPPC up to 7 mol% of the polymer-lipid DPPE-PEG:2000 were investigated by spin label electron spin resonance spectroscopy and spectrophotometry. The experimental data indicate that the dispersions have the dynamic and thermotropic characteristics of normal lamellar phase. Moreover, using spin labels that locate both in the interfacial and in the hydrocarbon regions, namely TEMPO-stearate, 5- and 16-PCSL, we find that relative to the unmodified DPPC bilayers, the polymer-grafted bilayers are loosely packed in the interfacial region and have reduced chain mobility in the gel phase. From the temperature dependence of the partition coefficient (P(c)), of the spin probe DTBN between the aqueous and the fluid hydrophobic regions of the bilayers and from the melting curves of the absorbance at 400 nm, we observe a slight influence on the endothermic phase transitions when increasing the concentration of the polymer-lipid in the DPPC bilayers, the influence being more evident in the pre-transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号