首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
HIF hydroxylation and cellular oxygen sensing   总被引:7,自引:0,他引:7  
  相似文献   

9.
10.
11.
12.
13.
14.
15.
Hypoxic response to low oxygen levels is characteristic of most solid cancers. Hypoxia-inducible factors (HIFs) regulate cellular metabolism, survival, proliferation, and cancer stem cell growth during hypoxia. The genome-wide analysis identified HAT1, a type B histone acetyltransferase, as an upregulated and essential gene in glioblastoma (GBM). GSEA analysis of differentially regulated genes in HAT1 silenced cells identified significant depletion of “hypoxia” gene sets. Hypoxia conditions induced HIF2A, not HIF1A protein levels in glioma cells in a HAT1-dependent manner. HAT1 and HIF2A interacted with each other and occupied the promoter of VEGFA, a bonafide HIF1A/HIF2A target. Acetylation of K512 and K596 residues by HAT1 is essential for HIF2A stabilization under normoxia and hypoxia as HIF2A carrying acetylation mimic mutations at either of these residues (H512Q or K596Q) showed stable expression in HAT1 silenced cells under normoxia and hypoxia conditions. Finally, we demonstrate that the HAT1-HIF2A axis is essential for hypoxia-promoted cancer stem cell maintenance and reprogramming. Thus, our study identifies that the HAT1-dependent acetylation of HIF2A is vital to executing the hypoxia-induced cell survival and cancer stem cell growth, therefore proposing the HAT1-HIF2A axis as a potential therapeutic target.  相似文献   

16.
17.
Hypoxia, which activates the hypoxia inducible factor 1α (HIF‐1α), is an essential feature of retinoblastoma (RB) and contributes to poor prognosis and resistance to conventional therapy. In this study, the effect of HIF‐1α knockdown by small interfering RNA (siRNA) on cell proliferation, apoptosis, and apoptotic pathways of human Y‐79 RB cells was first investigated. Exposure to hypoxia induced the increased expression of HIF‐1α both in mRNA and protein levels. Then, knockdown of HIF‐1α by siRNAHIF‐1α resulted in inhibition of cell proliferation and induced cell apoptosis in human Y‐79 RB cells under both normoxic and hypoxic conditions, with hypoxic conditions being more sensitive. Furthermore, knockdown of HIF‐1α could enhance hypoxia‐induced slight increase of Bax/Bcl‐2 ratio and activate caspase‐9 and caspase‐3. These results together indicated that suppression of HIF‐1α expression may be a promising strategy for the treatment of human RB in the future.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号