首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Drosophila repressor splicing factor 1 (RSF1) comprises an N-terminal RNA-binding region and a C-terminal domain rich in glycine, arginine and serine residues, termed the GRS domain. Recently, RSF1 has been shown to antagonize splicing factors of the serine/arginine-rich (SR) family and it is, therefore, expected to play a role in processing of a subset of Drosophila pre-mRNAs through specific interactions with RNA. To investigate the RNA-binding specificity of RSF1, we isolated RSF1-binding RNAs using an in vitro selection approach. We have identified two RNA target motifs recognized by RSF1, designated A (CAACGACGA)- and B (AAACGCGCG)-type sequences. We show here that the A-type cognate sequence behaves as an SR protein-dependent exonic splicing enhancer. Namely, three copies of the A-type ligand bind SR proteins, stimulate the efficiency of splicing of reporter pre-mRNAs several fold and lead to inclusion of a short internal exon both in vitro and in vivo. However, three copies of a B-type ligand were much less active. The finding that RSF1 acts as a potent repressor of pre-mRNA splicing in vitro led us to propose that the equilibrium between a limited number of structurally-related general splicing activators or repressors, competing for common or promiscuous binding sites, may be a major determinant of the underlying mechanisms controlling many alternative pre-mRNA process-ing events.  相似文献   

2.
Dxl6 is a member of the Drosophila melanogaster SR protein family, a group of nuclear proteins that are both essential splicing factors and specific splicing regulators. To get more insight of Dx16 function, we generated the monoclonal antibody against Dx16 and determined its expression pattern and subcellular location. It is mainly expressed in the nucleus of CNS in Drosophila embryos. In order to investigate the RNA-binding specificity of Dxl6, Dxl6-binding RNAs were identified by SELEX screen by using recombinant Dxl6 N-terminus protein as the target. These RNAs contained a consensus motif. Some pre-mRNAs from the corresponding genes showed splicing defects in the Dxl6-P-element insertional mutant fly. These results indicate that Dxl6 has unique functions in the removal of some introns during development.  相似文献   

3.
B52, an essential SR protein of Drosophila melanogaster, stimulates pre-mRNA splicing in splicing-deficient mammalian S100 extracts. Surprisingly, mutant larvae depleted of B52 were found to be capable of splicing at least several pre-mRNAs tested (H. Z. Ring and J. T. Lis, Mol. Cell. Biol. 14:7499-7506, 1994). In a homologous in vitro system, we demonstrated that B52 complements a Drosophila S100 extract to allow splicing of a Drosophila fushi tarazu (ftz) mini-pre-mRNA. Moreover, Kc cell nuclear extracts that were immunodepleted of B52 lost their ability to splice this ftz pre-mRNA. In contrast, splicing of this same ftz pre-mRNA occurred in whole larvae homozygous for the B52 deletion. Other SR protein family members isolated from these larvae could substitute for B52 splicing activity in vitro. We also observed that SR proteins are expressed variably in different larval tissues. B52 is the predominant SR protein in specific tissues, including the brain. Tissues in which B52 is normally the major SR protein, such as larval brain tissue, failed to produce ftz mRNA in the B52 deletion line. These observations support a model in which the lethality of the B52 deletion strain is a consequence of splicing defects in tissues in which B52 is normally the major SR protein.  相似文献   

4.
SR proteins are essential splicing factors whose function is controlled by multi-site phosphorylation of a C-terminal domain rich in arginine-serine repeats (RS domain). The protein kinase SRPK1 has been shown to polyphosphorylate the N-terminal portion of the RS domain (RS1) of the SR protein ASF/SF2, a modification that promotes nuclear entry of this splicing factor and engagement in splicing function. Later, dephosphorylation is required for maturation of the spliceosome and other RNA processing steps. While phosphates are attached to RS1 in a sequential manner by SRPK1, little is known about how they are removed. To investigate factors that control dephosphorylation, we monitored region-specific mapping of phosphorylation sites in ASF/SF2 as a function of the protein phosphatase PP1. We showed that 10 phosphates added to the RS1 segment by SRPK1 are removed in a preferred N-to-C manner, directly opposing the C-to-N phosphorylation by SRPK1. Two N-terminal RNA recognition motifs in ASF/SF2 control access to the RS domain and guide the directional mechanism. Binding of RNA to the RNA recognition motifs protects against dephosphorylation, suggesting that engagement of the SR protein with exonic splicing enhancers can regulate phosphoryl content in the RS domain. In addition to regulation by N-terminal domains, phosphorylation of the C-terminal portion of the RS domain (RS2) by the nuclear protein kinase Clk/Sty inhibits RS1 dephosphorylation and disrupts the directional mechanism. The data indicate that both RNA-protein interactions and phosphorylation in flanking sequences induce conformations of ASF/SF2 that increase the lifetime of phosphates in the RS domain.  相似文献   

5.
SR proteins are essential for pre-mRNA splicing in vitro, act early in the splicing pathway, and can influence alternative splice site choice. Here we describe the isolation of both dominant and loss-of-function alleles of B52, the gene for a Drosophila SR protein. The allele B52ED was identified as a dominant second-site enhancer of white-apricot (wa), a retrotransposon insertion in the second intron of the eye pigmentation gene white with a complex RNA-processing defect. B52ED also exaggerates the mutant phenotype of a distinct white allele carrying a 5' splice site mutation (wDR18), and alters the pattern of sex-specific splicing at doublesex under sensitized conditions, so that the male-specific splice is favored. In addition to being a dominant enhancer of these RNA-processing defects, B52ED is a recessive lethal allele that fails to complement other lethal alleles of B52. Comparison of B52ED with the B52+ allele from which it was derived revealed a single change in a conserved amino acid in the beta 4 strand of the first RNA-binding domain of B52, which suggests that altered RNA binding is responsible for the dominant phenotype. Reversion of the B52ED dominant allele with X rays led to the isolation of a B52 null allele. Together, these results indicate a critical role for the SR protein B52 in pre-mRNA splicing in vivo.  相似文献   

6.
7.
C C Query  R C Bentley  J D Keene 《Cell》1989,57(1):89-101
We have defined the RNA binding domain of the 70K protein component of the U1 small nuclear ribonucleoprotein to a region of 111 amino acids. This domain encompasses an octamer sequence that has been observed in other proteins associated with RNA, but has not previously been shown to bind directly to a specific RNA sequence. Within the U1 RNA binding domain, an 80 amino acid consensus sequence that is conserved in many presumed RNA binding proteins was discerned. This sequence pattern appears to represent an RNA recognition motif (RRM) characteristic of a distinct family of proteins. By site-directed mutagenesis, we determined that the 70K protein consists of 437 amino acids (52 kd), and found that its aberrant electrophoretic migration is due to a carboxy-terminal charged domain structurally similar to two Drosophila proteins (su(wa) and tra) that may regulate alternative pre-messenger RNA splicing.  相似文献   

8.
hnRNP A1 is a pre-mRNA binding protein that antagonizes the alternative splicing activity of splicing factors SF2/ASF or SC35, causing activation of distal 5' splice sites. The structural requirements for hnRNP A1 function were determined by mutagenesis of recombinant human hnRNP A1. Two conserved Phe residues in the RNP-1 submotif of each of two RNA recognition motifs appear to be involved in specific RNA-protein interactions and are essential for modulating alternative splicing. These residues are not required for general pre-mRNA binding or RNA annealing activity. The C-terminal Gly-rich domain is necessary for alternative splicing activity, for stable RNA binding and for optimal RNA annealing activity. hnRNP A1B, which is an alternatively spliced isoform of hnRNP A1 with a longer Gly-rich domain, binds more strongly to pre-mRNA but has only limited alternative splicing activity. In contrast, hnRNP A2 and B1, which have 68% amino acid identity with hnRNP A1, bind more weakly to pre-mRNA and have stronger splice site switching activities than hnRNP A1. We propose that specific combinations of antagonistic hnRNP A/B and SR proteins are involved in regulating alternative splicing of distinct subsets of cellular premRNAs.  相似文献   

9.
10.
11.
The Drosophila sex-lethal (Sxl) protein, a regulator of somatic sexual differentiation, is an RNA binding protein with two potential RNA recognition motifs (RRMs). It is thought to exert its function on splicing by binding to specific RNA sequences within Sxl and transformer (tra) pre-mRNAs. To examine the Sxl RNA binding specificity in detail, we performed in vitro selection and amplification of ligand RNAs from a random sequence pool on the basis of affinity with Sxl protein. After three cycles of selection and amplification, we cloned and sequenced 17 cDNAs corresponding to the RNAs selected in vitro. Sequencing showed that most of the RNAs selected contain polyuridine stretches surrounded by purine residues. In vitro binding analysis revealed that the sequences of the in vitro selected RNAs with relatively high affinity for Sxl show similarity to that of the Sxl- and tra-regulated acceptor regions, including the invariant AG sequence for splicing. These results suggest that Sxl recognizes and preferentially binds to a polyuridine stretch with a downstream AG sequence.  相似文献   

12.
13.
14.
RRM RNA结合蛋白的结构与功能   总被引:4,自引:0,他引:4  
RRM RNA结合蛋白是一类含一个或数个RRM结构域及附属结构域的RNA结合蛋白,参与RNA前体的剪接、RNA的细胞定位、RNA的稳定性等多种转录后调控过程.在RRM基序中含有许多保守的氨基酸以保证对RNA的结合活性,但是这一家族的不同蛋白质却能特异地结合各种不同的RNA分子.RRM RNA结合蛋白与某些人类遗传性疾病及肿瘤相关.  相似文献   

15.
SR proteins have a characteristic C-terminal Ser/Arg-rich repeat (RS domain) of variable length and constitute a family of highly conserved nuclear phosphoproteins that can function as both essential and alternative pre-mRNA splicing factors. We have cloned a cDNA encoding a novel human SR protein designated SRp30c, which has an unusually short RS domain. We also cloned cDNAs encoding the human homologues of Drosophila SRp55/B52 and rat SRp40/HRS. Recombinant proteins expressed from these cDNAs are active in constitutive splicing, as shown by their ability to complement a HeLa cell S100 extract deficient in SR proteins. Additional cDNA clones reflect extensive alternative splicing of SRp40 and SRp55 pre-mRNAs. The predicted protein isoforms lack the C-terminal RS domain and might be involved in feedback regulatory loops. The ability of human SRp30c, SRp40 and SRp55 to modulate alternative splicing in vivo was compared with that of other SR proteins using a transient contransfection assay. The overexpression of individual SR proteins in HeLa cells affected the choice of alternative 5' splice sites of adenovirus E1A and/or human beta-thalassemia reporters. The resulting splicing patterns were characteristic for each SR protein. Consistent with the postulated importance of SR proteins in alternative splicing in vivo, we demonstrate complex changes in the levels of mRNAs encoding the above SR proteins upon T cell activation, concomitant with changes in the expression of alternatively spliced isoforms of CD44 and CD45.  相似文献   

16.
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing.  相似文献   

17.
The SR proteins constitute a family of nuclear phosphoproteins which are required for constitutive splicing and also influence alternative splicing regulation. They have a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal domain, rich in arginine and serine residues. The functional role of the different domains of SR proteins in constitutive splicing activity has been extensively studied in vitro; however, their contribution to alternative splicing specificity in vivo has not been clearly established. We sought to address how the modular domains of SR proteins contribute to alternative splicing specificity. The activity of a series of chimeric proteins consisting of domain swaps between different SR proteins showed that splice site selection is determined by the nature of the RRMs and that RRM2 of SF2/ASF has a dominant role and can confer specificity to a heterologous protein. In contrast, the identity of the RS domain is not important, as the RS domains are functionally interchangeable. The contribution of the RRMs to alternative splicing specificity in vivo suggests that sequence-specific RNA binding by SR proteins is required for this activity.  相似文献   

18.
19.
Ghosh G  Adams JA 《The FEBS journal》2011,278(4):587-597
The splicing of mRNA requires a group of essential factors known as SR proteins, which participate in the maturation of the spliceosome. These proteins contain one or two RNA recognition motifs and a C-terminal domain rich in Arg-Ser repeats (RS domain). SR proteins are phosphorylated at numerous serines in the RS domain by the SR-specific protein kinase (SRPK) family of protein kinases. RS domain phosphorylation is necessary for entry of SR proteins into the nucleus, and may also play important roles in alternative splicing, mRNA export, and other processing events. Although SR proteins are polyphosphorylated in vivo, the mechanism underlying this complex reaction has only been recently elucidated. Human alternative splicing factor [serine/arginine-rich splicing factor 1 (SRSF1)], a prototype for the SR protein family, is regiospecifically phosphorylated by SRPK1, a post-translational modification that controls cytoplasmic-nuclear localization. SRPK1 binds SRSF1 with unusually high affinity, and rapidly modifies about 10-12 serines in the N-terminal region of the RS domain (RS1), using a mechanism that incorporates sequential, C-terminal to N-terminal phosphorylation and several processive steps. SRPK1 employs a highly dynamic feeding mechanism for RS domain phosphorylation in which the N-terminal portion of RS1 is initially bound to a docking groove in the large lobe of the kinase domain. Upon subsequent rounds of phosphorylation, this N-terminal segment translocates into the active site, and a β-strand in RNA recognition motif 2 unfolds and occupies the docking groove. These studies indicate that efficient regiospecific phosphorylation of SRSF1 is the result of a contoured binding cavity in SRPK1, a lengthy Arg-Ser repetitive segment in the RS domain, and a highly directional processing mechanism.  相似文献   

20.
The SR (arginine-serine rich) protein ASF/SF2 (also called human alternative splicing factor), an essential splicing factor, contains two functional modules consisting of tandem RNA recognition motifs (RRMs; RRM1-RRM2) and a C-terminal arginine-serine repeat region (RS domain, a domain rich in arginine-serine repeats). The SR-specific protein kinase (SRPK) 1 phosphorylates the RS domain at multiple serines using a directional (C-terminal-to-N-terminal) and processive mechanism—a process that directs the SR protein to the nucleus and influences protein-protein interactions associated with splicing function. To investigate how SRPK1 accomplishes this feat, the enzyme-substrate complex was analyzed using single-turnover and multiturnover kinetic methods. Deletion studies revealed that while recognition of the RS domain by a docking groove on SRPK1 is sufficient to initiate the processive and directional mechanism, continued processive phosphorylation in the presence of building repulsive charge relies on the fine-tuning of contacts with the RRM1-RRM2 module. An electropositive pocket in SRPK1 that stabilizes newly phosphorylated serines enhanced processive phosphorylation of later serines. These data indicate that SRPK1 uses stable, yet highly flexible protein-protein interactions to facilitate both early and late phases of the processive phosphorylation of SR proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号