首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mao X  Cao F  Nie X  Liu H  Chen J 《FEBS letters》2006,580(11):2615-2622
The ability of dimorphic transition between yeast and hyphal forms in Candida albicans is one of the vital determinants for its pathogenicity and virulence. We isolated C. albicans SWI1 as a suppressor of the invasive growth defect in a Saccharomyces cerevisiae mutant. Expression of C. albicans SWI1 in S. cerevisiae partially complemented the growth defect of a swi1 mutant in the utilization of glycerol. Swi1 is in a complex with Snf2 in C. albicans, and both proteins are localized in the nucleus independent of the growth form. Deleting SWI1 or SNF2 in C. albicans prevented true hyphal formation and resulted in constitutive pseudohypha-like growth in all media examined. Furthermore, swi1/swi1 mutant was defective in hypha-specific gene expression and avirulent in a mouse model of systemic infection. These data strongly suggest the conserved Swi/Snf complex in C. albicans is required for hyphal development and pathogenicity.  相似文献   

2.
3.
Saccharomyces cerevisiae Sir4p plays important roles in silent chromatin at telomeric and silent mating type loci. The C terminus of Sir4p (Sir4CT) is critical for its functions in vivo because over-expression or deletion of Sir4CT fragments disrupts normal telomeric structure and abolishes the telomere position effect. The 2.5A resolution X-ray crystal structure of an Sir4CT fragment (Sir4p 1217-1358) reveals a 72 residue homodimeric, parallel coiled coil, burying an extensive 3600A(2) of surface area. The crystal structure is consistent with results of protein cross-linking and analytical ultracentrifugation results demonstrating that Sir4CT exists as a dimer in solution. Disruption of the coiled coil in vivo by point mutagenesis results in total derepression of telomeric and HML silent mating marker genes, suggesting that coiled coil dimerization is essential for Sir4p-mediated silencing. In addition to the coiled coil dimerization interface (Sir4CC interface), a crystallographic interface between pairs of coiled coils is significantly hydrophobic and buries 1228A(2) of surface area (interface II). Remarkably, interface II mutants are deficient in telomeric silencing but not in mating type silencing in vivo. However, point mutants of interface II do not affect the oligomerization state of Sir4CT in solution. These results are consistent with the hypothesis that interface II mimics a protein interface between Sir4p and one of its protein partners that is essential for telomeric silencing but not mating type silencing.  相似文献   

4.
5.
6.
Nickel enhances telomeric silencing in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
Broday L  Cai J  Costa M 《Mutation research》1999,440(2):121-130
Certain nickel compounds including crystalline nickel sulfide (NiS) and subsulfide (Ni3S2) are potent human and animal carcinogens. In Chinese hamster embryo cells, an X-linked senescence gene was inactivated following nickel-induced DNA methylation. Nickel also induced the inactivation of the gpt reporter gene by chromatin condensation and a DNA methylation process in a transgenic gpt+ Chinese hamster cell line (G12), which is located near a heterochromatic region. To determine if nickel can cause gene silencing independently of DNA methylation, based only on the induction of changes in chromatin structure, we measured its effect on gene silencing in Saccharomyces cerevisiae. Growth of yeast in the presence of nickel chloride repressed a telomeric marker gene (URA3) and resulted in a stable epigenetic switch. This phenomenon was dependent on the number of cell doubling prior to selection and also on the distance of the marker gene from the end of the chromosome. The level of TPE (telomeric position effect) increased linearly with elevations of nickel concentration. Addition of magnesium inhibited this effect, but magnesium did not silence the reporter gene by itself. The level of silencing was also assessed following treatment with other transition metals: cobalt, copper and cadmium. In the sublethal range, cobalt induced similar effects as nickel, while copper and cadmium did not change the basal level of gene expression. Silencing by copper and cadmium were evident only at concentrations of those metals where the viability was very low.  相似文献   

7.
8.
Yeast (Saccharomyces cerevisiae) SWI/SNF is a prototype for a large family of ATP-dependent chromatin-remodeling enzymes that facilitate numerous DNA-mediated processes. Swi2/Snf2 is the catalytic subunit of SWI/SNF, and it is the founding member of a novel subfamily of the SF2 superfamily of DNA helicase/ATPases. Here we present a functional analysis of the diagnostic set of helicase/ATPase sequence motifs found within all Swi2p/Snf2p family members. Whereas many of these motifs play key roles in ATP binding and/or hydrolysis, we identify residues within conserved motif V that are specifically required to couple ATP hydrolysis to chromatin-remodeling activity. Interestingly, motif V of the human Swi2p/Snf2p homolog, Brg1p, has been shown to be a possible hot spot for mutational alterations associated with cancers.  相似文献   

9.
10.
Benbow SZ  DuBois ML 《FEBS letters》2008,582(4):497-502
Alterations in protein composition or dosage within chromatin may trigger changes in processes such as gene expression and DNA repair. Through transposon mutagenesis and targeted gene deletions in haploids and diploids of Saccharomyces cerevisiae, we identified mutations that affect telomeric silencing in genes encoding telomere-associated Sir4p and Yku80p and chromatin remodeling ATPases Ies2p and Rsc1p. We found that sir4/SIR4 heterozygous diploids efficiently silence the mating type locus HMR but not telomeres, and diploids heterozygous for yku80 and ies2 mutations are inefficient at DNA repair. In contrast, strains heterozygous for most chromatin remodeling ATPase mutations retain wild-type silencing and DNA repair levels. Thus, in diploids, chromatin structures required for DNA repair and telomeric silencing are sensitive to dosage changes.  相似文献   

11.
12.
13.
A number of studies have implicated the yeast INO80 chromatin remodeling complex in DNA replication, but the function of the human INO80 complex during S phase remains poorly understood. Here, we have systematically investigated the involvement of the catalytic subunit of the human INO80 complex during unchallenged replication and under replication stress by following the effects of its depletion on cell survival, S-phase checkpoint activation, the fate of individual replication forks, and the consequences of fork collapse. We report that INO80 was specifically needed for efficient replication elongation, while it was not required for initiation of replication. In the absence of the Ino80 protein, cells became hypersensitive to hydroxyurea and displayed hyperactive ATR-Chk1 signaling. Using bulk and fiber labeling of DNA, we found that cells deficient for Ino80 and Arp8 had impaired replication restart after treatment with replication inhibitors and accumulated double-strand breaks as evidenced by the formation of γ-H2AX and Rad51 foci. These data indicate that under conditions of replication stress mammalian INO80 protects stalled forks from collapsing and allows their subsequent restart.  相似文献   

14.
15.
D R TerBush  T Maurice  D Roth    P Novick 《The EMBO journal》1996,15(23):6483-6494
In the yeast Saccharomyces cerevisiae, the products of at least 15 genes are involved specifically in vesicular transport from the Golgi apparatus to the plasma membrane. Previously, we have shown that three of these genes, SEC6, SEC8 and SEC15, encode components of a multisubunit complex which localizes to the tip of the bud, the predominant site of exocytosis in S. cerevisiae. Mutations in three more of these genes, SEC3, SEC5 and SEC10, were found to disrupt the subunit integrity of the Sec6-Sec8-Sec15 complex, indicating that these genes may encode some of the remaining components of this complex. To examine this possibility, we cloned and sequenced the SEC5 and SEC10 genes, disrupted them, and either epitope tagged them (Sec5p) or prepared polyclonal antisera (Sec10p) to them for co-immunoprecipitation studies. Concurrently, we biochemically purified the remaining unidentified polypeptides of the Sec6-Sec8-Sec15 complex for peptide microsequencing. The genes encoding these components were identified by comparison of predicted amino acid sequences with those obtained from peptide microsequencing of the purified complex components. In addition to Sec6p, Sec8p and Sec15p, the complex contains the proteins encoded by SEC3, SEC5, SEC10 and a novel gene, EXO70. Since these seven proteins function together in a complex required for exocytosis, and not other intracellular trafficking steps, we have named it the Exocyst.  相似文献   

16.
J Du  I Nasir  B K Benton  M P Kladde  B C Laurent 《Genetics》1998,150(3):987-1005
The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle.  相似文献   

17.
18.
19.
Fourteen novel single-amino-acid substitution mutations in histone H3 that disrupt telomeric silencing in Saccharomyces cerevisiae were identified, 10 of which are clustered within the alpha1 helix and L1 loop of the essential histone fold. Several of these mutations cause derepression of silent mating locus HML, and an additional subset cause partial loss of basal repression at the GAL1 promoter. Our results identify a new domain within the essential core of histone H3 that is required for heterochromatin-mediated silencing.  相似文献   

20.
It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers the mating efficiency of MATa strains. Likewise, rad6-delta reduces silencing of the telomere-located RNAP II-transcribed genes URA3 and ADE2. We also show that the RNAP III-transcribed tyrosyl tRNA gene, SUP4-o, is subject to position effect variegation when located near a telomere and that this silencing requires the RAD6 and SIR genes. Neither of the two known Rad6 binding factors, Rad18 and Ubr1, is required for telomeric silencing. Since Ubrl is the recognition component of the N-end rule-dependent protein degradation pathway, this suggests that N-end rule-dependent protein degradation is not involved in telomeric silencing. Telomeric silencing requires the amino terminus of Rad6. Two rad6 point mutations, rad6(C88A) and rad6(C88S), which are defective in ubiquitin-conjugating activity fail to complement the silencing defect, indicating that the ubiquitin-conjugating activity of RAD6 is essential for full telomeric silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号