首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shigella flexneri serotype 2a is a major public health concern in the developing and under-developed countries which contributes to shigellosis endemic and mortality. Thus, there is an urgent need for a rapid diagnostic test for effective therapy and disease management. Previous study showed that a ∼35 kDa antigenic protein from S. flexneri is a potential biomarker. We therefore modelled the three-dimensional structure of the antigen to probe its functionality which could aid in the development of an antigen-based diagnostic. Results showed that the antigen is a transmembrane protein consists of OmpA and OmpA-like domains. The OmpA domain is a beta-barrel embedded in the outer membrane with four surface-exposed extracellular loops. The OmpA-like domain is linked to the OmpA domain with a 17 amino acids linker and located in the periplasmic. Docking of peptidoglycan into the groove of OmpA-like domain might help in catalyzing the bacterial cell wall formation. Both domains are expected to be involved in the virulence, structural stability, pathogenesis and survival of Shigella thus made the 35 kDa protein a suitable shigellosis diagnostic biomarker. This structural elucidation will also enable a better identification of the epitope regions for the development of specific binders to the 35 kDa antigen.  相似文献   

2.
The outer membrane protein A (OmpA) plays important roles in anchoring of the outer membrane to the bacterial cell wall. The C-terminal periplasmic domain of OmpA (OmpA-like domain) associates with the peptidoglycan (PGN) layer noncovalently. However, there is a paucity of information on the structural aspects of the mechanism of PGN recognition by OmpA-like domains. To elucidate this molecular recognition process, we solved the high-resolution crystal structure of an OmpA-like domain from Acinetobacter baumannii bound to diaminopimelate (DAP), a unique bacterial amino acid from the PGN. The structure clearly illustrates that two absolutely conserved Asp271 and Arg286 residues are the key to the binding to DAP of PGN. Identification of DAP as the central anchoring site of PGN to OmpA is further supported by isothermal titration calorimetry and a pulldown assay with PGN. An NMR-based computational model for complexation between the PGN and OmpA emerged, and this model is validated by determining the crystal structure in complex with a synthetic PGN fragment. These structural data provide a detailed glimpse of how the anchoring of OmpA to the cell wall of gram-negative bacteria takes place in a DAP-dependent manner.  相似文献   

3.
The function of OmpA in Escherichia coli   总被引:3,自引:0,他引:3  
Outer membrane protein A (OmpA) is a major protein in the Escherichia coli outer membrane. In this study, the function of OmpA in E. coli stress survival was examined. An E. coli K1 ompA-deletion mutant was significantly more sensitive than that of its parent strain to sodium dodecyl sulfate (SDS), cholate, acidic environment, high osmolarity, and pooled human serum. A number of amino acid changes at the extracellular loops of OmpA did not affect the viability of E. coli, while short peptide insertions in the periplasmic turns of the OmpA beta-barrel decreased E. coli resistance to environmental stresses. Moreover, ompA mutants were found to survive much better within brain microvascular endothelial cells than the wild-type strain, supporting that OmpA is a major target in mammalian host cell defense. These results indicated that OmpA plays a vital structural role in E. coli, and suggested that a perfect beta-barrel structure of OmpA is important for outer membrane stability. Based on these results and the published OmpA structural analyses, I propose that OmpA is composed of three functional domains including a hydrophilic extracellular mass, a beta-barrel transmembrane structure, and a peptidoglycan binding domain.  相似文献   

4.
Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis. The outer membrane protein A (OmpA) assembles a beta-barrel structure having four surface-exposed loops in E. coli outer membrane. OmpA of meningitis-causing E. coli K1 is shown to contribute to invasion of the human brain microvascular endothelial cells (HBMEC), the main cellular component of the blood-brain barrier (BBB). However, the direct evidence of OmpA protein interacting with HBMEC is not clear. In this study, we showed that OmpA protein, solubilized from the outer membrane of E. coli, adhered to HBMEC surface. To verify OmpA interaction with the HBMEC, we purified N-terminal membrane-anchoring beta-barrel domain of OmpA and all surface-exposed loops deleted OmpA proteins, and showed that the surface-exposed loops of OmpA were responsible for adherence to HBMEC. These findings indicate that the OmpA is the adhesion molecule with HBMEC and the surface-exposed loops of OmpA are the determinant of this interaction.  相似文献   

5.
The outer membrane protein A (OmpA) of Gram-negative bacteria has been ascribed multiple functions including maintenance of structural membrane integrity and porin activity. OmpA has also been implicated in various host defense processes in that it contributes to bacterial serum resistance and activates certain immune cells. Recently, OmpA was shown to be the molecular target for neutrophil elastase (NE), and Escherichia coli mutants lacking OmpA were resistant to the bactericidal effects of NE. In addition to NE, neutrophils use a variety of other antibacterial effector molecules such as oxygen radicals and bactericidal peptides or proteins. The aim of this study was to investigate the role of E. coli OmpA regarding susceptibility to other neutrophil-derived defense systems. We found that OmpA-deficient (OmpA(-)), but not wild-type isogenic, E. coli activated human neutrophils to produce oxygen radicals intracellularly. This activation was found to require an intact neutrophil cytoskeleton but was independent of bacterial phagocytosis. Furthermore, we found that the OmpA(-) strain was more susceptible to membrane-acting bactericidal peptides than the wild-type strain, although the susceptibility to different oxygen radicals was independent of the presence of OmpA. Taken together, these data suggest an important role for OmpA in the context of bacteria vs. host interactions.  相似文献   

6.
The major outer membrane protein (MOMP) of Haemophilus ducreyi is an OmpA homolog that migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels as three species with apparent molecular weights ranging from 37,000 to 43,000. Monoclonal antibodies directed against this macromolecule were used to identify recombinant clones containing fragments of the gene encoding this protein. Nucleotide sequence analysis of these fragments confirmed that the MOMP encoded by the intact gene (momp) was a member of the OmpA family of outer membrane proteins. Construction of an isogenic H. ducreyi mutant unable to express the MOMP led to the discovery of a second outer membrane protein which migrated at the same rate on SDS-PAGE gels as the MOMP. N-terminal amino acid sequence analysis of this second protein revealed that its N terminus was nearly identical to that of the MOMP and also had homology with members of the OmpA family. Nucleotide sequence analysis of the region downstream from the momp gene revealed the presence of a partial open reading frame encoding a predicted OmpA-like protein. A modification of anchored PCR technology was used to obtain the nucleotide sequence of this downstream gene which was shown to encode a second OmpA homolog (OmpA2). The N-terminal amino acid sequence of OmpA2 was identical to that of the OmpA-like protein detected in the momp mutant. The H. ducreyi MOMP and OmpA2 proteins, which comigrated on SDS-PAGE gels and which were encoded by the tandem arranged momp and ompA2 genes, were 72% identical.  相似文献   

7.
The outer membrane of Gram-negative bacteria is an essential structure involved in nutrient uptake, protection against harmful substances, and cell growth. Different proteins keep the outer membrane from blebbing out by simultaneously interacting with it and with the cell wall. These proteins have been mainly studied in enterobacteria, where OmpA and the Braun and Pal lipoproteins stabilize the outer membrane. Some degree of functional redundancy exists between these proteins, since none of them is essential but the absence of two of them results in a severe phenotype. Caulobacter crescentus has a different strategy to maintain its outer membrane, since it lacks the Braun lipoprotein and Pal is essential. In this work, we characterized OmpA2, an OmpA-like protein, in this bacterium. Our results showed that this protein is required for normal stalk growth and that it plays a minor role in the stability of the outer membrane. An OmpA2 fluorescent fusion protein showed that the concentration of this protein decreases from the stalk to the new pole. This localization pattern is important for its function, and it depends on the position of the gene locus in the chromosome and, as a consequence, in the cell. This result suggests that little diffusion occurs from the moment that the gene is transcribed until the mature protein attaches to the cell wall in the periplasm. This mechanism reveals the integration of different levels of information from protein function down to genome arrangement that allows the cell to self-organize.  相似文献   

8.
Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa(-/-) mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa(-/-) macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa(-/-) mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1.  相似文献   

9.
Outer membrane protein A (OmpA) has been implicated as an important virulence factor in several gram-negative bacterial infections such as Escherichia coli K1, a leading cause of neonatal meningitis associated with significant mortality and morbidity. In this study, we generated E. coli K1 mutants that express OmpA in which three or four amino acids from various extracellular loops were changed to alanines, and we examined their ability to survive in several immune cells. We observed that loop regions 1 and 2 play an important role in the survival of E. coli K1 inside neutrophils and dendritic cells, and loop regions 1 and 3 are needed for survival in macrophages. Concomitantly, E. coli K1 mutants expressing loop 1 and 2 mutations were unable to cause meningitis in a newborn mouse model. Of note, mutations in loop 4 of OmpA enhance the severity of the pathogenesis by allowing the pathogen to survive better in circulation and to produce high bacteremia levels. These results demonstrate, for the first time, the roles played by different regions of extracellular loops of OmpA of E. coli K1 in the pathogenesis of meningitis and may help in designing effective preventive strategies against this deadly disease.  相似文献   

10.
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) mediated by outer membrane protein A (OmpA) results in the leakage of HBMEC monolayers. Despite the influence of nitric oxide (NO) in endothelial cell tight junction integrity, its role in E. coli -induced HBMEC monolayer permeability is poorly defined. Here, we demonstrate that E. coli invasion of HBMEC stimulates NO production by increasing the inducible nitric oxide synthase (iNOS) expression. Exposure to NO-producing agents enhanced the invasion of OmpA+ E. coli and thereby increased the permeability of HBMEC. OmpA+ E. coli- induced NO production lead to increased generation of cGMP and triggered the expression of OmpA receptor, Ec-gp96 in HBMEC. Pre-treatment of HBMEC with iNOS inhibitors or by introducing siRNA to iNOS, but not to eNOS or cGMP inhibitors abrogated the E. coli- induced expression of Ec-gp96. Overexpression of the C-terminal truncated Ec-gp96 in HBMEC prevented NO production and its downstream effector, cGMP generation and consequently, the invasion of OmpA+ E. coli. NO/cGMP production also activates PKC-α, which is previously shown to be involved in HBMEC monolayer leakage. These results indicate that NO/cGMP signalling pathway plays a novel role in OmpA+ E. coli invasion of HBMEC by enhancing the surface expression of Ec-gp96.  相似文献   

11.
Escherichia coli is one of the most important pathogens involved in the development of neonatal meningitis in many parts of the world. Traversal of E. coli across the blood-brain barrier is a crucial event in the pathogenesis of E. coli meningitis. Our previous studies have shown that outer membrane protein A (OmpA) expression is necessary in E. coli for a mechanism involving actin filaments in its passage through the endothelial cells. Focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) have also been activated in host cells during the process of invasion. In an attempt to elucidate the mechanisms leading to actin filament condensation, we have focused our attention on protein kinase C (PKC), an enzyme central to many signaling events, including actin rearrangement. In the current study, specific PKC inhibitors, bisindolmaleimide and a PKC-inhibitory peptide, inhibited E. coli invasion of human brain microvascular endothelial cells (HBMEC) by more than 75% in a dose-dependent manner, indicating a significant role played by this enzyme in the invasion process. Our results further showed that OmpA+ E. coli induces significant activation of PKC in HBMEC as measured by the PepTag nonradioactive assay. In addition, we identified that the PKC isoform activated in E. coli invasion is a member of the conventional family of PKC, PKC-alpha, which requires calcium for activation. Immunocytochemical studies have indicated that the activated PKC-alpha is associated with actin condensation beneath the bacterial entry site. Overexpression of a dominant negative mutant of PKC-alpha in HBMEC abolished the E. coli invasion without significant changes in FAK phosphorylation or PI3K activity patterns. In contrast, in HBMEC overexpressing the mutant forms of either FAK or PI3K, E. coli-induced PKC activation was significantly blocked. Furthermore, our studies showed that activation of PKC-alpha induces the translocation of myristoylated alanine-rich protein kinase C substrate, an actin cross-linking protein and a substrate for PKC-alpha, from the membrane to cytosol. This is the first report of FAK- and PI3K-dependent PKC-alpha activation in bacterial invasion related to cytoskeletal reorganization.  相似文献   

12.
Shigella flexneri is an intracellular pathogen that deploys an arsenal of virulence factors promoting host cell invasion, intracellular multiplication and intra- and inter-cellular dissemination. We have previously reported that the interaction between apyrase (PhoN2), a periplasmic ATP-diphosphohydrolase, and the C-terminal domain of the outer membrane (OM) protein OmpA is likely required for proper IcsA exposition at the old bacterial pole and thus for full virulence expression of Shigella flexneri (Scribano et al., 2014). OmpA, that is the major OM protein of Gram-negative bacteria, is a multifaceted protein that plays many different roles both in the OM structural integrity and in the virulence of several pathogens. Here, by using yeast two-hybrid technology and by constructing an in silico 3D model of OmpA from S. flexneri 5a strain M90T, we observed that the OmpA residues 188EVQ190 are likely essential for PhoN2-OmpA interaction. The 188EVQ190 amino acids are located within a flexible region of the OmpA protein that could represent a scaffold for protein-protein interaction.  相似文献   

13.
RmpM is a putative peptidoglycan binding protein from Neisseria meningitidis that has been shown to interact with integral outer membrane proteins such as porins and TonB-dependent transporters. Here we report the 1.9 A crystal structure of the C-terminal domain of RmpM. The 150-residue domain adopts a betaalphabetaalphabetabeta fold, as first identified in Bacillus subtilis chorismate mutase. The C-terminal RmpM domain is homologous to the periplasmic, C-terminal domain of Escherichia coli OmpA; these domains are thought to be responsible for non-covalent interactions with peptidoglycan. From the structure of the OmpA-like domain of RmpM, we suggest a putative peptidoglycan binding site and identify residues that may be essential for binding. Both the crystal structure and solution experiments indicate that RmpM may exist as a dimer. This would promote more efficient peptidoglycan binding, by allowing RmpM to interact simultaneously with two glycan chains through its C-terminal, OmpA-like binding domain, while its (structurally uncharacterized) N-terminal domain could stabilize oligomers of porins and TonB-dependent transporters in the outer membrane.  相似文献   

14.
15.
The gene encoding the 25 kDa major outer membrane protein (MOMP) of Legionella pneumophila was transformed into Escherichia coli JM 83 and the resultant E. coli LP 116 clone expressed the Legionella-MOMP. Compared with the parent E. coli strain, the clone showed a fivefold increase in opsonin-independent binding to U-937 cells. Furthermore, this gene was incorporated by electroporation into a low virulence derivative of Leg. pneumophila which showed reduced expression of the MOMP but enhanced expression of a 31 kDa protein in the OMP profile. After electroporation, the attenuated strain showed an increased expression of the MOMP while the 31 kDa protein was eliminated and virulence for the chick embryo was re-established. The use of a monoclonal antibody specific for the MOMP abolished virulence and adherence. These studies suggest that the 25 kDa MOMP of Leg. pneumophila serves as an adhesive molecule for host cells and that this protein plays a major role in the virulence of the organism for the chick embryo.  相似文献   

16.
The intracellular bacterial pathogen, Salmonella enterica serovar Typhimurium (S. typhimurium), causes disease in a variety of hosts. To invade and replicate in host cells, these bacteria subvert host molecular machinery using bacterial proteins, called effectors, which they translocate into host cells using specialized protein delivery systems. One of these effectors, SopD, contributes to gastroenteritis, systemic virulence and persistence of S. typhimurium in animal models of infection. Recently, SopD has been implicated in invasion of polarized epithelial cells and here we investigate the features of SopD-mediated invasion. We show that SopD plays a role in membrane fission and macropinosome formation during S. typhimurium invasion, events previously shown to be mediated by the SopB effector. We further demonstrate that SopD acts cooperatively with SopB to promote these events during invasion. Using live cell imaging we show that a SopD-GFP fusion does not localize to HeLa cell cytosol as previously described, but instead is membrane associated. Upon S. typhimurium infection of these cells, SopD-GFP is recruited to the invasion site, and this recruitment required the phosphatase activity of SopB. Our findings demonstrate a role for SopD in manipulation of host-cell membrane during S. typhimurium invasion and reveal the nature of its cooperative action with SopB.  相似文献   

17.
Consistent with many other results indicating that SecA plays an essential role in the translocation of presecretory proteins across the Escherichia coli inner membrane, we previously found that a approximately 95% depletion of SecA completely blocks the export of periplasmic proteins in vivo. Surprisingly, we found that about 25% of the outer membrane protein (OMP) OmpA synthesized after SecA depletion was gradually translocated across the inner membrane. In this study we analyzed the export of several other OMPs after SecA depletion. We found that 25-50% of each OMP as well as an OmpA-alkaline phosphatase fusion protein was exported from SecA-deficient cells. This partial export was completely abolished by the SecA inhibitor sodium azide and therefore still required the participation of SecA. Examination of a variety of OmpA derivatives, however, ruled out the possibility that OMPs are selectively translocated in SecA-deficient cells because SecA binds to their N termini with unusually high affinity. Export after SecA depletion was observed in cells that lack SecB, the primary targeting factor for OMPs, but was abolished by partial inactivation of DnaK. Furthermore, OmpA could be isolated in a stable complex with DnaK. The data strongly suggest that OMPs require only a relatively low level of translocase activity to cross the inner membrane because they can be preserved in a prolonged export-competent state by DnaK.  相似文献   

18.
Esherichia coli, the most common gram-negative bacteria, can penetrate the brain microvascular endothelial cells (BMECs) during the neonatal period to cause meningitis with significant morbidity and mortality. Experimental studies have shown that outer-membrane protein A (OmpA) of E. coli plays a key role in the initial steps of the invasion process by binding to specific sugar moieties present on the glycoproteins of BMEC. These experiments also show that polymers of chitobiose (GlcNAcbeta1-4GlcNAc) block the invasion, while epitopes substituted with the L-fucosyl group do not. We used HierDock computational technique that consists of a hierarchy of coarse grain docking method with molecular dynamics (MD) to predict the binding sites and energies of interactions of GlcNAcbeta1-4GlcNAc and other sugars with OmpA. The results suggest two important binding sites for the interaction of carbohydrate epitopes of BMEC glycoproteins to OmpA. We identify one site as the binding pocket for chitobiose (GlcNAcbeta1-4GlcNAc) in OmpA, while the second region (including loops 1 and 2) may be important for recognition of specific sugars. We find that the site involving loops 1 and 2 has relative binding energies that correlate well with experimental observations. This theoretical study elucidates the interaction sites of chitobiose with OmpA and the binding site predictions made in this article are testable either by mutation studies or invasion assays. These results can be further extended in suggesting possible peptide antagonists and drug design for therapeutic strategies.  相似文献   

19.
The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa) into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29), a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29(+)/OmpA(-) E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9) than Omp29(-)/OmpA(-) E. coli. While the entry of Aa and Omp29(+)/OmpA(-) E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK), a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin) and Rho GTPases inhibitor (EDIN), both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway.  相似文献   

20.
Refolding of an integral membrane protein. OmpA of Escherichia coli   总被引:7,自引:0,他引:7  
OmpA is an integral membrane protein from the outer membrane of Escherichia coli. Purified, lipopolysaccharide-free OmpA was denatured by boiling in sodium dodecyl sulfate (SDS). Refolding was then induced by replacement of SDS with the nonionic detergent octylglucoside. The structure of both the denatured and refolded protein were investigated by SDS-gel electrophoresis, protease digestion, Raman and fluorescence spectroscopy. Refolded OmpA could be reconstituted into membranes of the synthetic lipid dimyristoylphosphatidylcholine. Thus, lipopolysaccharide is neither necessary for proper folding of OmpA nor for its insertion into lipid membranes. Based on this result, models for sorting of OmpA into the outer membrane of E. coli are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号