首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The catalytic amino acid residues of the extracellular β-D-glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) from Aspergillus carbonarius were investigated. The pH dependence curves gave apparent pK values of 2.8 and 5.93 for the free enzyme, and 2.24 and 6.14 for the enzyme–substrate complex using p-nitrophenyl-β-D-glucoside as substrate. Carbodiimide- and Woodward reagent K-mediated chemical modifications suggested that a carboxylate residue, located in the active centre, was fundamental in the catalysis. The pH dependence of inactivation revealed the involvement of a group with pK value of 4.61 in the modification reaction, proving that a carboxylate residue was modified. The A. carbonarius β-glucosidase was irreversibly inactivated by N-bromoacetyl-β-D-glucopyranosylamine. The active site specificity of the inactivation was proved by using the competitive inhibitor p-nitrophenyl-1-thio-β-D-glucopyranoside. pH Dependence studies of inactivation revealed that modification by N-bromoacetyl-β-D-glucopyranosylamine could be directed toward the carboxylate group acting as the catalytic nucleophile, as in the case of the carbodiimide and Woodward reagent K modifications.  相似文献   

2.
Zeng X  Sun Y  Uzawa H 《Biotechnology letters》2005,27(19):1461-1465
4-Methylumbelliferyl N-acetyllactosaminide and 4-methylumbelliferyl sialyl N-acetyllactosaminides, which are used for the assay of sialytransferase, neuraminidase and fucosyltransferase, were synthesized, respectively, by the β-D-galactosidase from Bacillus circulans and by a recombinant rat α2,3-(N)-sialyltransferase or rat liver α2,6-(N)-sialyltransferase with CMP-N-acetylneuraminic acid as donor.  相似文献   

3.
1-(2,3,5-Tri-O-acetyl)--D-ribofuranosyl indole, the key compound in the synthesis of glycosides with the bis(indole) aglycone, was obtained for the first time by the indoline–indole method. There were synthesized 3-(1-methylindol-3-yl)-4-(1-glycosylindol-3-yl)furan(or pyrrole)-2,5-diones containing the residue of -D-ribofuranose or 2-deoxy--D-ribofuranose and analogous glycosides of indolo[2,3-a]furano(or pyrrolo)[3,4-]carbazol-5,7-diones, which are structurally relative to the antitumor antibiotic rebeccamycin. Their cytotoxicities toward a number of human tumor cell lines were studied in vitro, and the carbazole N-glycosides were shown to be more active than the bis(indole) glycosides. At the same time, the ribofuranosides were found to be less active than the corresponding ribopyranosides synthesized previously.  相似文献   

4.
Eremomycin derivatives with benzylated amino groups of both residues of eremosamine and with (R) or (S)-2-amino-4-methylpentyl substituted for N-methyl-D-Leu, the first amino acid residue of its heptapeptide, were synthesized in order to study the role of the peptide bond between the first and second amino acid residues of the heptapeptide moiety of the antibiotic in its interaction with the precursors of the bacterial cell wall peptidoglycan and the exhibition of its antibacterial activity. Comparison of the antibacterial activities of N",N"-dibenzyleremomycin, de-(N-methyl-D-Leu)-N",N"-dibenzyleremomycin, and its N-(2-amino-4-methylpentyl)-derivative (1,2-deoxo-N",N"-dibenzyleremomycin) demonstrated that cleavage or replacement of the first amino acid residue by the corresponding aminoalkyl residue results in a decrease in its antibacterial activity towards both vancomycin-sensitive and vancomycin-resistant strains of microorganisms.  相似文献   

5.
3-Ketovalidoxylamine A C–N lyase is one of three key enzymes in the production of valienamine, which is a potent glucosidase inhibitor from validamycin A. N-p-Nitrophenyl-3-ketovalidamine, used as the substrate of 3-ketovalidoxylamine A C–N lyase, was prepared from N-p-nitrophenylvalidamine with free cells of Stenotrophomonas maltrophilia CCTCC M 204024. The yield and selectivity of N-p-nitrophenyl-3-ketovalidamine from cells were improved by treatment with 10 mM ethylenediaminetetraacetic acid. The optimal pH and temperature for N-p-nitrophenyl-3-ketovalidamine formation was pH 6.0 and 30°C, respectively. N-p-Nitrophenyl-3-ketovalidamine was formed with a yield of 0.68 in the first batch.  相似文献   

6.
N-Acyl-D-glutamate amidohydrolase (D-AGase) was inhibited by 94 % when 1 mol/l N-acetyl-DL- glutamate was used as a substrate. The addition of 1 mM Co2+ stabilized D-AGase. Moreover, the substrate inhibition was weakened to 88% with the addition of 0.4 mM Co2+ to the reaction mixture. Although D-AGase is a zinc-metalloenzyme, the addition of Zn2+ from 0.01 to 10 mM did not increase the D-glutamic acid production in the saturated substrate. Under optimal conditions, 0.38 M D-glutamic acid was obtained from N-acyl-DL-glutamate with 100% of the theoretical yield after 48 h.  相似文献   

7.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

8.
The role of E-cadherin in the spheroid formation of hepatocytes adhered on the poly(N-p-vinylbenzyl-D-lactonamide) (PVLA) as a model ligand for asialoglycoprotein receptors (ASGP-R) of hepatocytes was studied. Expression of E-cadherin was increased in round hepatocytes adhered on a high-coating density of PVLA (100 μg/ml), and also in flat ones adhered on a low-coating density of PVLA (1 μg/ml) in the presence of epidermal growth factor (EGF). Hepatocyte spheroids formed on the high-coating density of PVLA in the presence of EGF after 48 h were inhibited by an anti-E-cadherin monoclonal antibody (ECCD-1). From immunofluorescence and confocal laser microscopy, E-cadherin was localized in the intercellular boundaries and concentrated at the inside surface of aggregated cells. As a result, E-cadherin could play an important role in hepatocyte assembly.  相似文献   

9.
α-Chymotrypsin-catalyzed peptide synthesis was carried out between an N-protected D-amino acid ester and an L-amino acid amide (acyl donor, 10 mM; acyl acceptor, 50 mM; enzyme, 2 mg ml−1; pH 8). By using a highly reactive carbamoylmethyl (Cam) ester as acyl donor, the D-amino acid was incorporated into the N-terminus of the resulting dipeptide amide. N-Protected dipeptide amides bearing D-amino acids such as D-Phe, D-Leu and D-Ala at their N-terminus were synthesized in high yields (up to 80%) in 1–3 h.  相似文献   

10.
Summary. New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.  相似文献   

11.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

12.
In this exploratory study, indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-D-glucan levels were determined through long-term sampling (24-h) using a Button Personal Inhalable Aerosol Sampler. The air samples were collected in five Cincinnati area homes that had no visible mold growth. The total count of fungal spores and pollen in the collected samples was conducted under the microscope and Limulus Amebocyte Lysate (LAL) chromogenic assay method was utilized for the determination of the (1→3)-β-D-glucan concentration. For the combined number concentration of fungal spores and pollen, the indoor and outdoor geometric mean values were 573 and 6,435 m−3, respectively, with a geometric mean of the Indoor/Outdoor (I/O) ratio of .09. The geometric means of indoor and outdoor (1→3)-β-D-glucan concentrations were .92 and 6.44 ng m−3, respectively, with a geometric mean of the I/O ratio equal to .14. The I/O ratio of (1→3)-β-D-glucan concentration was found to be marginally greater than that calculated based on the combined number concentration of fungal spores and pollen. This suggests that (1→3)-β-D-glucan data are affected not only by intact spores and pollen grains but also by the airborne fragments of fungi, pollen, and plant material, which are ignored by traditional enumeration methodologies. Since the (1→3)-β-D-glucan level may elucidate the total exposure to fungal spores, pollen, and fungal fragments, its I/O ratio may be used as a risk marker for mold and pollen exposure in indoor environments.  相似文献   

13.
New triterpene glycosides, ulososides C, (20S,22S,23R,24S)-3,22,23-trihydroxy-3-O-(-D-glucopyranosyl)-32-nor-24-methyllanost-8(9)-ene-30-oic acid, D, (20S,22S,23R,24S)-3,22,23-trihydroxy-3-O-(-D-N-acetylglucosaminopyranosyl)-32-nor-24-methyllanost-8(9)-ene-30-oic acid, and E, (20S,22S,23R,24S)-3,22,23-trihydroxy-3-O-(-D-glucuronopyranosyl-(1 2)--D-arabinopyranosyl-32-nor-24-methyllanost-8(9)-ene-30-oic acid, were isolated from an Ulosa sp. sponge. Their structures were determined by spectral methods and chemical transformations. Specific features of their structures are discussed.  相似文献   

14.
Conformational changes to 1,4-β-D-glucan cellobiohydrolase I (CBHI) in response to its binding with p-nitrophenyl β-D-cellobioside (PNPC) were analyzed by second-derivative fluorescence spectrometry at the saturation binding point. Irreversible changes to the configuration of PNPC during the course of the binding process were characterized by UV spectral analysis. Isothermal titration calorimetry (ITC) was used to determine the stoichiometry of binding (i.e. the number of molar binding sites) of PNPC to CBHI. Two points on the surface of the CBHI molecule interact with PNPC, and irreversible changes to the configuration of PNPC occur during its conversion to p-nitrophenyl (PNP). The ITC studies demon-strated that the binding of PNPC to CBHI is an irreversible process, in which heat is released, but where there is no reversible equilibrium between PNPC-CBHI and CBHI and PNPC. On the other hand, PNP and cellobiose need to be released from the PNPC-CBHI complex to facilitate the repeated binding of new PNPC molecules to the renewable CBHI molecules. Therefore, we speculate that the energy, which powers the configurational change of PNPC as it is converted to PNP, is generated from cyclic changes in the conformation of CBHI during the binding/de-sorption process. These new insights may provide a basis for a better understanding of the binding mechanism in enzyme-substrate interactions.  相似文献   

15.
Summary N,N′-diacetylchitobiose was produced from chitin as a major hydrolytic product by controlling the ratio of β-N-acetylglucosaminidase to N,N′-diacetylchitobiohydrolase activities in the crude enzyme preparation of Aeromonas sp. GJ-18. When the enzyme preparation was preincubated at 50 °C, β-N-acetylglucosaminidase was nearly inactivated, while the N,N′-diacetylchitobiohydrolase was still active. Thus, the composition of chitin oligosaccharides depended on the preincubation temperature of the crude enzyme preparations. Typically, after 7 days of incubation with the substrate chitin, 78.9 and 56.6% of N,N′-diacetylchitobiose yields were obtained from swollen α-chitin and powdered β-chitin, respectively, with enzyme preparations that had been pretreated at 50 °C for 60 min.  相似文献   

16.
In this paper we report on the enzymatic preparation of d-p-trimethylsilylphenylalanine (d-TMS-Phe). First, dl-5-(p-trimethylsilylphenylmethyl)hydantoin␣(dl-TMS-Phe-Hyd) was synthesized chemically and subjected to bacterial hydrolysis to obtain N-carbamoyl-d-p-trimethylsilylphenylalanine (C-d-TMS-Phe), but no strains examined showed sufficient hydantoinase activity on this compound. However, Blastobacter sp. A17p-4, which is known to produce N-carbamoyl-d-amino acid amidohydrolase (DCase), was found to be able to hydrolyze C-dl-TMS-Phe prepared chemically from the hydantoin. When C-dl-TMS-Phe was hydrolyzed with cells of Blastobacter sp. A17p-4, its optical purity was low because N-carbamoyl-l-amino acid amidohydrolase (LCase) coexisted in the cells. DCase and LCase in the cell-free extract of Blastobacter sp. A17p-4 could be separated by DEAE-Sephacel column chromatography. The optimum pH for the hydrolysis of C-dl-TMS-Phe by the partially purified DCase was 8.0 and addition of 2.5 % N,N-dimethylformamide was effective in raising the substrate concentration without inactivation of DCase. Under the optimized conditions, highly optically pure (98 % enantiomeric excess) d-TMS-Phe could be obtained from C-dl-TMS-Phe with partially purified DCase. Received: 12 July 1996 / Received revision: 11 September 1996 / Accepted: 2 November 1996  相似文献   

17.
This study presents a HPLC method for the separation and purification of p-bromophenylacetylurea (BPAU) and its metabolites. The method effectively separated and purified BPAU and its metabolites. Three metabolites of BPAU, M1, M2 and M3 were characterised by mass spectroscopy and nuclear magnetic resonance. They are named as N′-hydroxy-p-bromophenylacetylurea, 4-(4-bromophenyl)-3-oxapyrrolidine-2,5-dione and N′-methyl-p-bromophenylacetylurea, respectively. The major metabolic pathways of BPAU were proposed. The establishment of the HPLC method and characterisation of BPAU metabolites make it possible for further pharmacokinetic studies to explore the mechanism of BPAU-induced delayed neuropathy.  相似文献   

18.
The sheath of Sphaerotilus natans is composed of cysteine-rich peptide and polysaccharide moieties. The polysaccharide was prepared by treating the sheath with hydrazine, and was determined to be a mucopolysaccharide containing β-D-GlcA, β-D-Glc, α-D-GalN, and β-D-GalN. To elucidate the structure of the peptide, the sheath was labeled with a thiol-selective fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Enantiomeric determination of the S-derivatized Cys in the fluorescent sheath suggested that it contained L-Cys mainly. Fluorescent cysteinylglycine was detected in the partial acid hydrolysate of the fluorescent sheath. The sheath-degrading enzyme secreted by Paenibacillus koleovorans produced a fluorescent disaccharide-dipeptide composed of GalN, Gly, and N-acetylated Cys from the fluorescent sheath. The disaccharide and dipeptide moieties were found to be connected by an amide bond. Based on these results, the sheath was deduced to be formed by association of a mucopolysaccharide modified with N-acetyl-L-cysteinylglycine.  相似文献   

19.
The enzymatic synthesis of the Tn antigen (GalNAc-α-O-Ser), a glyco-aminoacid of great biological importance, is reported. The reaction was promoted by commercial α-N-acetylgalactosaminidase from Acremonium sp., using p-nitrophenyl-α-N-acetylgalactosamine as the donor. The kinetics were monitored by capillary electrophoresis and LC–UV-MS. For unprotected serine, the role of pH and temperature was investigated, finding that pH 5 and T = 18 °C gave the best yield. Under these conditions a significant increase of the reaction rate was observed in comparison with previous literature data, using unprotected serine. The role of the bulkiness of the serine protecting groups on the yield was additionally considered, as well as the kinetic profiles generated by the use of two differently protected aminoacids. By proper choice of the protecting group, the reaction yield then increased from 5% (with unprotected serine) to about 50% (with N-Boc and N-methoxycarbonyl serine).  相似文献   

20.
Monogenically-inherited resistance to Soil-borne cereal mosaic virus (SBCMV) in hexaploid bread wheat cultivars ‘Tremie’ and ‘Claire’ was mapped on chromosome 5D. The two closest flanking markers identified in the Claire-derived mapping population, Xgwm469-5D and E37M49, are linked to the resistance locus at distances of 1 and 9 cm, respectively. Xgwm469-5D co-segregated with the SBCMV resistance in the Tremie-derived population and with the recently identified Sbm1 locus in the cv. Cadenza. This suggested that Tremie and Claire carry a resistance gene allelic to Sbm1, or one closely linked to it. The diagnostic value of Xgwm469-5D was assessed using a collection of SBCMV resistant and susceptible cultivars. Importantly, all susceptible genotypes carried a null allele of Xgwm469-5D, whereas resistant genotypes presumably related to either Claire and Tremie or Cadenza revealed a 152 or 154 bp allele of Xgwm469-5D, respectively. Therefore, Xgwm469-5D is well suited for marker assisted selection for SBCMV resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号