首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genus Drosophila has long been used as a model of karyotype evolution, demonstrating change by paracentric inversion and occasional centric fusion of an ancestral karyotype of five rod-shaped and one "dot" chromosome. This study shows, by mapping D. melanogaster probes hybridized to polytene chromosomes of Zaprionus tuberculatus, that this ancestral pattern extends beyond the genus Drosophila. A formal polytene chromosome map of Z. tuberculatus is presented.  相似文献   

2.
A combined approach based on cytological observations in situ hybridization, and qualitative Southern-blot analyses were used to localize the proximal border of the right arm of polytene chromosome 2 in Drosophila melanogaster otu 11 strain. A genetically functional chromosome 2 is bounded by "deletions" C', C, D, B, A and ms2-10. Using in situ hybridization in conjunction with comparative quantitative Southern-blot hybridization to deletions in centromeric heterochromatin, DNA of specific centromeric clone lambda20p1.4 was localized with respect to "deletions" and on otu 11 polytene chromosomes. Comparison of hybridization sites of lambda20p1.4 on polytene chromosomes, and its amount in mutant lines of D. melanogaster carrying known "deletions" in the centromeric heterochromatin enabled us to localize the proximal border of the right arm of chromosome 2 in D. melanogaster otu 11 strain between the 39/40 region and hybridization site of the k20p1.4 DNA fragment.  相似文献   

3.
The distribution of cohesin complex in polytene chromosomes of Drosophila melanogaster was studied. Cohesin is a complicated protein complex which is regulated by the DRAD21 subunit. Using immunostaining for DRAD21p, the cohesins were shown to be preferentially located in the interband regions. This specificity was not characteristic for puffs, where uniform staining was observed. The presence of a few brightly fluorescent regions (five to ten per chromosome arm) enriched with cohesin complexes was shown. Some of these regions had permanent location, and the others, variable location. No antibody binding was detected in the chromocenter. Immunostaining of interphase nuclei of neuroblasts revealed large cohesin formations. On the polytene chromosomes of D. melanogaster, the Drad21 gene was mapped to the chromocentric region (81) of the L arm of chromosome 3.  相似文献   

4.
在过去的十年中, Zaprionus indianus这一温带适应性果蝇已经入侵印度次大陆, 并扩大了其在该地区的分布。Z. indianus能成功入侵是由于它具有很强的适应性和对极端生理条件的耐受性。对Z. indianus (温带狭域分布种类) 和黑腹果蝇Drosophila melanogaster (全球广域分布种类)在极端温度下未成熟期和成虫期发育阈值的比较研究表明, 两者的死亡率和发育起点温度存在显著差异。为了检测越冬期间未成熟期和成虫期抗逆性和存活率的变化, 以采自印度温带和热带不同地点的Z. indianus种群进行饲养实验。在温带地区的田间养虫笼中以及恒定的实验室条件下监测这些种群的卵孵化率和成虫存活率, 直至全部成虫死亡。结果表明, 由于温带地区卵孵化率和存活率高, 导致总的孵化率和存活率在不同纬度间存在显著差异。卵至成虫发育实验结果表明, 低温条件下产下的卵在温度适中时成功发育成成虫。由此可见, 这种昆虫在未成熟期具有的气候适应性以及在成虫期具有的抗逆性可为该物种提供季节性保护。考虑到气候变暖情况, 即温度增加0.6℃, 温度的少许改变都可能导致种群存活能力的显著增强和发育历期缩短。这些结果可解释Z. indianus为什么能够轻易突破障碍并适应新的环境。  相似文献   

5.
6.
7.
The distribution of four retrotransposon families (MDG1, MDG3, MDG4 and copia) on polytene chromosomes of different (from 9 to 15) Drosophila simulans strains is studied. The mean number of MDG1 and copia euchromatic hybridization sites (3 sites for each element) is drastically decreased in D. simulans in comparison with D. melanogaster (24 and 18 sites respectively). The mean number of MDG3 sites of hybridization is 5 in D. simulans against 12 in D. melanogaster. As for MDG4 both species have on the average about 2-3 euchromatic sites. The majority of MDG1 and copia and about a half of MDG3 euchromatic copies are localized in restricted number of sites (hot spots) on D. simulans polytene chromosomes. In D. melanogaster these elements are scattered along the chromosomes though there are some hot spots too. It appears that euchromatic copies of MDG1 and copia are considerably less mobile in D. simulans in contrast to D. melanogaster. Some common hot spots of retrotransposon localization in D. simulans and D. melanogaster were earlier described as intercalary heterochromatin regions in D. melanogaster. The level of interstrain variability of MDG4 hybridization sites is comparable in both species. Comparative blot-analysis of adult and larval salivary gland DNA shows that MDG1 and copia are situated mainly in euchromatic regions of D. melanogaster chromosomes. In D. simulans genome they are located mainly in heterochromatic regions underreplicated in salivary gland polytene chromosomes. There are interspecies differences in the distribution of retrotransposons in beta-heterochromatic chromosome regions.  相似文献   

8.
R N Sarma  L Fish  B S Gill  J W Snape 《Génome》2000,43(1):191-198
The wheat homoeologous Group 5 chromosomes were characterized physically in terms of rice linkage blocks using a deletion mapping approach. All three chromosomes, 5A, 5B, and 5D, were shown to have a similar structure, apart from the 4A-5A translocation on the distal end of chromosome arm 5AL. The physical mapping of rice markers on the deletion lines revealed that the whole of rice chromosome 9 is syntenous to a large block, proximal to the centromere, on the long arm. Likewise, a small segment of the distal end of the long arm showed conserved synteny with the distal one-third end of the long arm of rice chromosome 3. In between those conserved regions, there is a region on the long arm of the Group 5 chromosomes which shows broken synteny. The proximal part of the short arms of the Group 5 chromosomes showed conserved synteny with a segment of the short arm of rice chromosome 11 and the distal ends showed conserved synteny with a segment of rice chromosome 12. The physical locations of flowering time genes (Vrn and earliness per se) and the gene for grain hardness (Ha) on the Group 5 chromosomes were determined. These results indicate that comparative mapping using the deletion mapping approach is useful in the study of genome relationships, the physical location of genes, and can determine the appropriate gene cloning strategy.  相似文献   

9.
Podemski L  Ferrer C  Locke J 《Chromosoma》2001,110(4):305-312
Inversions of genetic segments during the evolution of Drosophila are well documented in the X chromosome and most autosomes, but little attention has been paid to chromosome 4, the smallest autosome or "dot chromosome" present in many Drosophila species. From our previous mapping we have defined probes that mark proximal, intermediate, and distal locations of chromosome 4 in D. melanogaster. In situ hybridizations on salivary gland polytene chromosomes with these probes show that the whole right arm, including genes within cytological region 101EF-102F, is inverted relative to D. simulans. We also used these probes to determine the orientation of the arm of the dot chromosome in nine species of Drosophila, including eight from the melanogaster subfamily. To account for the observed whole arm inversions of chromosome 4 in five of the nine species examined, we propose that three inversion events have occurred during the evolution of these species. These whole arm inversions may explain some of the unusual features of this chromosome.  相似文献   

10.
Drosophila melanogaster telomeres contain arrays of two non-LTR retrotransposons called HeT-A and TART. Previous studies have shown that HeT-A- and TART-like sequences are also located at non-telomeric sites in the Y chromosome heterochromatin. By in situ hybridization experiments, we mapped TART sequences in the h16 region of the long arm close to the centromere of the Y chromosome of D. melanogaster. HeT-A sequences were localized in two different regions on the Y chromosome, one very close to the centromere in the short arm (h18-h19) and the other in the long arm (h13-h14). To assess a possible heterochromatic location of TART and HeT-A elements in other Drosophila species, we performed in situ hybridization experiments, using both TART and HeT-A probes, on mitotic and polytene chromosomes of D. simulans, D. sechellia, D. mauritiana, D. yakuba and D. teissieri. We found that TART and HeT-A probes hybridize at specific heterochromatic regions of the Y chromosome in all Drosophila species that we analyzed.  相似文献   

11.
P M Bingham  B H Judd 《Cell》1981,25(3):705-711
Results are described demonstrating that several X chromosomes of Drosophila melanogaster carrying the Wa (white-apricot) mutant allele also carry homology to the copia transposable element in distal 3C of the polytene chromosome map as assessed by situ hybridization. The locus of the Wa mutation, white, resides in distal 3C. We further show, using fine scale genetic mapping techniques, that the copia homology in distal 3C in Wa-bearing chromosomes is very tightly linked to the Wa mutation. Both the Wa mutation and the copia homology associated with it map to the central portion of the white locus.  相似文献   

12.
V N Stegni?  I E Vasserlauf 《Genetika》1991,27(7):1163-1168
The principles of three dimensional organization of primary and secondary orders polytene chromosomes in ovarian nurse cells of Drosophila melanogaster were elucidated. Contrary to somatic tissues, no joining of chromosome arms into local chromocentre was discovered. The chromosomes are separated in the nuclear space and are attached to the nuclear envelope by the centromeric (and the XL arm--by the telomeric) sites, the arms of autosomes (especially primary polytene chromosomes) being separated in the area of attachment. Polytenized XR arm of the X chromosomes were discovered. The architecture of chromosomes discovered in ovarian nurse cells is tissue-specific and differs considerably from the organization of polytene chromosomes of somatic tissues.  相似文献   

13.
Transposable elements constitute a major fraction of eukaryotic genomes. Here, I characterize two novel non-LTR retrotransposons, cloned from the neo-Y chromosome of Drosophila miranda. Worf is 4.1 kb in size and shows homology to the T1-2 non-LTR transposon characterized in Anopheles. Spock is 4.9 kb in size and shows similarity to the Doc element of D. melanogaster. Southern blot analysis of both elements yielded stronger signals for male DNA. In situ hybridization to polytene chromosomes revealed that both elements are accumulating on the neo-Y chromosome of D. miranda. PCR analysis was conducted to investigate the frequency of spock and worf and of the previously identified transposons, TRIM and TRAM, at individual chromosomal sites among 12 strains of D. miranda. Contrary to the observation that element frequencies are usually kept low at individual sites in Drosophila, the four transposons investigated are fixed at their genomic locations on the neo-Y chromosome. These results support the hypothesis that transposons accumulate in nonrecombining regions and may be one cause of the heteromorphism of sex chromosomes.  相似文献   

14.
Drosophila melanogaster is polymorphic for the major cuticular hydrocarbon of females. In most populations this hydrocarbon is 7,11-heptacosadiene, but females from Africa and the Caribbean usually possess low levels of 7,11-heptacosadiene and high quantities of its position isomer 5,9-heptacosadiene. Genetic analysis shows that the difference between these two morphs is due to variation at a single segregating factor located on the right arm of chromosome 3 near map position 51.5 and cytological position 87C-D. This is precisely the position of a desaturase gene previously sequenced using primers derived from yeast and mouse, and localized by in situ hybridization to the polytene chromosomes of D. melanogaster. Alleles of this desaturase gene may therefore be responsible for producing the two hydrocarbon morphs. Mating tests following the transfer of these isomers between females of the two morphs show that, in contrast to previous studies, the hydrocarbon profiles have no detectable effect on mating behaviour or sexual isolation.  相似文献   

15.
This paper describes a method for the identification of single copy genes in Drosophila melanogaster polytene chromosomes, using fluorescence in situ hybridization (FISH). We demonstrate the detection of white (w) , a gene previously mapped to 1-1.5 region of the linkage map, and to 3C2 region of the cytogenetic map of X chromosome. Squash preparations of polytene chromosomes from salivary glands dissected out from third instar larvae of Drosophila melanogaster were denatured and subjected to hybridization with a digoxigenin labeled probe, corresponding to mini-white gene. The preparations were then washed and incubated with antidigoxigenin-fluorescein antibodies. After removal of the nonspecifically bound antibodies, the polytene chromosomes were counterstained with propidium iodide. Fluorescence microscopy revealed white locus in the X chromosome in a subterminal location, in agreement with the above mentioned maps. The protocol is efficient and adaptable for simultaneously multiple signal detection.  相似文献   

16.
17.
Resistance to the cyclodiene insecticide dieldrin maps to a single gene (Rdl) on the left arm of chromosome III in Drosophila melanogaster (Meigen). The gene was further mapped by the use of chromosomal deficiencies to a single letter sub-region, 66F, on the polytene chromosome. The cross-resistance spectrum of a backcrossed strain lacking elevated mixed function oxidase activity, a common resistance mechanism, was examined. Levels of resistance similar to those found in other insects were found to dieldrin, aldrin, endrin, lindane, and picrotoxinin. Strong similarity of this single major gene with that found in other cyclodiene resistant insects is suggested by its cross-resistance spectrum and chromosomal location, via homology with other Diptera. The significance of major genes in insecticide resistance is discussed.  相似文献   

18.
Somatic mutation and recombination test on wing cells of Drosophila melanogaster showed that the recombination frequency in the somatic tissues of strains studied correlated with the presence of a full-length copy of the hobo transposable element in the genome. Transposition of hobo in somatic tissue cells at a frequency 3.5 x 10-2 per site per X chromosome was shown by fluorescence in situ hybridization with salivary gland polytene chromosomes of larvae of one of the D. melanogaster strains having a full-length hobo copy.  相似文献   

19.
In situ hybridization of (dC-dA)n.(dG-dT)n to the polytene chromosomes of Drosophila melanogaster reveals a clearly non-random distribution of chromosomal sites for this sequence. Sites are distributed over most euchromatic regions but the density of sites along the X chromosome is significantly higher than the density over the autosomes. All autosomes show approximately equal levels of hybridization except chromosome 4 which has no detectable stretches of (dC-dA)n.(dG-dT)n. Another striking feature is the lack of hybridization of the beta-heterochromatin of the chromocenter. The specific sites are conserved between different strains of D. melanogaster. The same overall chromosomal pattern of hybridization is seen for the other Drosophila species studied, including D. simulans, a sibling species with a much lower content of middle repetitive DNA, and D. virilis, a distantly related species. The evolutionary conservation of the distribution of (dC-dA)n.(dG-dT)n suggests that these sequences are of functional importance. The distribution patterns seen for D. pseudoobscura and D. miranda raise interesting speculations about function. In these species a chromosome equivalent to an autosomal arm of D. melanogaster has been translocated onto the X chromosome and acquired dosage compensation. In each species the new arm of the X also has a higher density of (dC-dA)n.(dG-dT)n similar to that seen on other X chromosomes. In addition to correlations with dosage compensation, the depletion of (dC-dA)n.(dG-dT)n in beta-heterochromatin and chromosome 4 may also be related to the fact that these regions do not normally undergo meiotic recombination.  相似文献   

20.
K C Kirkland  J P Phillips 《Gene》1987,61(3):415-419
A synthetic oligodeoxynucleotide 18-mer probe derived from the amino acid sequence of Drosophila melanogaster cytoplasmic superoxide dismutase (cSOD) was used to screen a D. melanogaster genomic library. One of the positive clones maps by in situ hybridization to position 68A8-9 on the left arm of polytene chromosome 3, the region to which cSOD mutants have previously been mapped genetically. Partial sequence analysis verifies the presence of cSOD-coding sequences in this clone and indicates that the intron structure of the Drosophila cSOD gene differs significantly from its human counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号