首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In situ hybridization of 125I-labelled 5 S and 18 + 28 S ribosomal RNAs to the salivary polytene chromosomes of Drosophila melanogaster was successfully quantitated. Although the precision of the data is low, it is possible to compare the hybridization reaction between an RNA sample and chromosomes in situ with the reaction between the same RNA sample and Drosophila DNA immobilized on nitrocellulose filters. The in situ hybrid dissociates over a narrow temperature range with a midpoint similar to the value expected for the filter hybrid. The kinetics of the in situ hybridization reaction can be fit with a single first-order rate constant that has a value from three to five times smaller than the corresponding filter hybridization reaction. Although the reaction saturates at longer times or higher RNA concentrations, the saturation value does not correspond to an RNA molecule bound to every available DNA sequence. With the acid denaturation procedure most commonly used to preserve cytological quality, only 5 to 10% of the complementary DNA in the chromosomes is available to form hybrids in situ. This hybridization efficiency is a function of how the slides are prepared and the conditions of annealing, but is approximately constant with a given procedure for both 5 S RNA and 18 + 28 S RNA over a number of different cell types with different DNA contents. The results provide further evidence that the formation of RNA-DNA hybrids is the sole basis of in situ hybridization, and show that the properties of the in situ hybrids are remarkably similar to those of filter hybrids. It is also suggested that for reliable chromosomal localization using the in situ hybridization technique, the kinetics of the reaction should be followed to ensure that the correct rate constant is obtained for the major RNA species in the sample and an impurity in the sample is not localized instead.  相似文献   

2.
The genus Drosophila has long been used as a model of karyotype evolution, demonstrating change by paracentric inversion and occasional centric fusion of an ancestral karyotype of five rod-shaped and one "dot" chromosome. This study shows, by mapping D. melanogaster probes hybridized to polytene chromosomes of Zaprionus tuberculatus, that this ancestral pattern extends beyond the genus Drosophila. A formal polytene chromosome map of Z. tuberculatus is presented.  相似文献   

3.
J. P. Gupta  A. Kumar 《Genetica》1987,74(1):19-25
Zaprionus indianus, a member of the family Drosophilidae, is one of the commonest and most widespread species in India. It exploits a variety of fermenting fruits in nature. The nucleolar organizer regions (NORs), mitotic and polytene chromosomes were studied. A standard map of the polytene chromosomes has been constructed in order to locate break-points precisely for naturally occurring chromosomal rearrangements. Analysis of population samples of this species from four different geographical areas has revealed the presence of a single paracentric inversion in the second chromosome. Our quantitative data on the above inversion have confirmed the excess of inversion heterozygotes in nature.  相似文献   

4.
Zaprionus indianus is a drosophilid native to the Afrotropical region that has colonized South America and exhibits a wide geographical distribution. In contrast, Z. sepsoides is restricted to certain African regions. The two species differ in the size of their testes, which are larger in Z. indianus than in Z. sepsoides. To better understand the biology and the degree of differentiation of these species, the current study evaluated spermatogenesis in males of different ages by conventional staining techniques and ultrastructural analysis. Spermatogenesis and the ultrastructure of spermatozoa were similar in the two species, and the diploid number was confirmed to be 2n = 12. A greater number of spermatozoa were observed in young Z. indianus (1–3 days old) compared to Z. sepsoides males, which showed a higher frequency of cells at the early stages of spermatogenesis. The head of the sperm was strongly marked by silver staining, lacto-acetic orcein and the Feulgen reaction; the P.A.S. reaction revealed glycogen granules in the testes of both species. Both species presented similar arrangement of microtubules (9+9+2), two mitochondrial derivatives of different size and 64 spermatozoa per bundle. Such similarity within the genus Zaprionus with other species of Drosophila, indicates that these structures are conserved in the family Drosophilidae. The differences observed the number and frequency of sperm cells in the early stages of spermatogenesis, between the young males of Z. indianus and Z. sepsoides, are features that may interfere with reproductive success and be related to the invasive potential of Z. indianus.  相似文献   

5.
6.
7.
Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO‐I and CO‐II) among 23 geographical populations. mtDNA revealed the presence of two well‐supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African‐origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 ± 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human‐commensal. Our results reconfirm the great utility of mtDNA at both inter‐ and intraspecific analyses within the frame of an integrated taxonomical project.  相似文献   

8.
Six purified tRNAs labeled with 125I by chemical or enzymatic methods were hybridized to polytene chromosomes of Drosophila melanogaster. The main chromosomal regions of hybridization were: tRNA GGA Gly , 58A, 84C, and 90E; tRNA 2 Leu , 44E, 66B5-8, and 79F; tRNA 2b Ser , 86A, 88A9-12, and 94A6-8; tRNA 3 Thr , 47F and 87B; tRNA 4 Thr , 93A1-2; and tRNA 1 Tyr , 19F, 22F-23A, 41, 50C1-4 and 85A. At 50C the hybridization of tRNA 1 Tyr was polymorphic in the giant strains. When the hybridization of three valine isoacceptors studied previously was re-investigated, it was found that only one hybridization site, 90BC, was shared between tRNA 3b Val and tRNA 4 Val . tRNA 3a Val did not have any sites in common with the other two.  相似文献   

9.
Transfer RNA 5; Asn , tRNA ; His , and tRNAAla were isolated from Drosophila melanogaster by means of Sepharose 4B chromatography and 2-dimensional polyacrylamide gel electrophoresis. The tRNAs were iodinated in vitro with Na125I and hybridized in situ to salivary gland chromosomes from Drosophila. Subsequent autoradiography allowed the localization of the genes for tRNA 5; Asn in the regions 42A, 59F, 60C, and 84F; for tRNAHis in the regions 48F and 56E; and for tRNAAla in the regions 63A and 90C. From these and our previous results it can be concluded that the genes for the Q-base containing tRNAs (tRNAAsn, tRNAAsp, and tRNAHis, are not clustered in the Drosophila melanogaster genome.  相似文献   

10.
Zaprionus indianus, also known as the African fig fly, is an invasive pest of a variety of commercial and native fruit. The species was first reported in Brazil in 1999, but has established itself in much of the New World within the last 10–15 years. We used nucleotide sequences from a segment of the mitochondrial cytochrome c oxidase subunit I (COI) gene to examine haplotype relationships, population structure, and infer the colonization history of Z. indianus in Mexico and Panama. Construction of a haplotype network showed that six COI haplotypes, obtained from flies collected at six localities in Mexico and one in Panama, clustered into three distinct clades. Clade composition was generally consistent in flies from Panama to northwestern Mexico, and analysis of molecular variance indicated no significant structure among populations. Three of the six haplotypes from Mexico and Panama were identical to previously reported haplotypes from Brazil. None of the six haplotypes, however, were shared with previously reported haplotypes from potential source populations in the Old World. The results of our genetic analysis suggest that the invasion of Z. indianus into Central America and Mexico most probably includes a northward migration of individuals from Brazil, with the possibility of at least one additional introduction of Z. indianus to the New World. Additional sequence data from potential source populations in the Old World will be required to confidently determine the number of introductions of Z. indianus into the New World, and to identify the geographic source.  相似文献   

11.
M. Papaceit  E. Juan 《Chromosoma》1993,102(5):361-368
Twelve biotin-labelled recombinant DNA probes were hybridized to polytene chromosomes ofDrosophila melanogaster andD. lebanonesis. Probes were chosen in order to cover the whole chromosomal complement. Six probes correspond to known genes fromD. melanogaster (RpII215, H3–H4, MHC, hsp28/23, hsp83, hsp70), four probes are clones isolated from aD. subobscura library (Xdh, DsubS3, DsubG3, DsubG4) and the remaining two probes correspond to the Adh gene ofD. lebanonensis and to one sequence (262), not yet characterized, from the same species. The chromosomal homologies obtained from the in situ hybridization results allow us to determine that Muller's C and D chromosomal elements are fused in the karyotype ofD. lebanonensis and constitute the large metacentric chromosome. Single pericentric inversions in theE andB elements have generated the medium and small metacentric chromosomes, respectively. No great changes are detected in Muller'sA element, which remains acrocentric. The changes detected in the karyotypic evolution ofD. lebanonensis are frequently observed inDrosophila evolution, as deduced from chromosomal homologies of severalDrosophila species. The results are also consistent with Muller's proposal that chromosomal elements have been conserved during the evolution ofDrosophila.  相似文献   

12.
13.
14.
 We report an extended whole-mount in situ hybridization procedure for Drosophila embryos. By using probes labelled with digoxigenin, fluorescein and biotin, respectively, this protocol allows the detection in three colours of RNAs derived from three different genes. Hybridized probes are detected by consecutive staining with appropriate alkaline phosphatase conjugates using different chromogenic substrate combinations, and serial removal of the antibody conjugates by low pH washes. Received: 7 May 1996/Accepted: 7 July 1996  相似文献   

15.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

16.
Ecophysiological interactions between the community members (i.e., nitrifiers and heterotrophic bacteria) in a carbon-limited autotrophic nitrifying biofilm fed only NH(4)(+) as an energy source were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescence in situ hybridization (FISH). Phylogenetic differentiation (identification) of heterotrophic bacteria was performed by 16S rRNA gene sequence analysis, and FISH probes were designed to determine the community structure and the spatial organization (i.e., niche differentiation) in the biofilm. FISH analysis showed that this autotrophic nitrifying biofilm was composed of 50% nitrifying bacteria (ammonia-oxidizing bacteria [AOB] and nitrite-oxidizing bacteria [NOB]) and 50% heterotrophic bacteria, and the distribution was as follows: members of the alpha subclass of the class Proteobacteria (alpha-Proteobacteria), 23%; gamma-Proteobacteria, 13%; green nonsulfur bacteria (GNSB), 9%; Cytophaga-Flavobacterium-Bacteroides (CFB) division, 2%; and unidentified (organisms that could not be hybridized with any probe except EUB338), 3%. These results indicated that a pair of nitrifiers (AOB and NOB) supported a heterotrophic bacterium via production of soluble microbial products (SMP). MAR-FISH revealed that the heterotrophic bacterial community was composed of bacteria that were phylogenetically and metabolically diverse and to some extent metabolically redundant, which ensured the stability of the ecosystem as a biofilm. alpha- and gamma-Proteobacteria dominated the utilization of [(14)C]acetic acid and (14)C-amino acids in this biofilm. Despite their low abundance (ca. 2%) in the biofilm community, members of the CFB cluster accounted for the largest fraction (ca. 64%) of the bacterial community consuming N-acetyl-D-[1-(14)C]glucosamine (NAG). The GNSB accounted for 9% of the (14)C-amino acid-consuming bacteria and 27% of the [(14)C]NAG-consuming bacteria but did not utilize [(14)C]acetic acid. Bacteria classified in the unidentified group accounted for 6% of the total heterotrophic bacteria and could utilize all organic substrates, including NAG. This showed that there was an efficient food web (carbon metabolism) in the autotrophic nitrifying biofilm community, which ensured maximum utilization of SMP produced by nitrifiers and prevented buildup of metabolites or waste materials of nitrifiers to significant levels.  相似文献   

17.
Fluorescence in situ hybridization was used to determine the spatial distribution of chromatin in zygote pronuclei. A hybrid system involving golden hamster eggs and individual human sperm permitted use of DNA probes specific for the entire human chromosome 4, for the heterochromatic region on the long arm of the human Y chromosome and for unique DNA sequences on human chromosome 19. Chromosome 4 occupied a circumscribed domain in the pronuclei, similar to findings in somatic interphases. Unlike the situation in somatic interphases, the Y heterochromatin was extended throughout the first cell cycle. Pronuclear chromatin was extended 3- to 4-fold compared to somatic interphase chromatin. The extended pronuclear chromatin conformation is likely to affect a zygote's susceptibility to environmental hazards.  相似文献   

18.
Probes specific to chromosome elements were used to investigate chromosome homologies between seven species of the Drosophila obscura group by in situ hybridization. Our results were in perfect agreement with the already established chromosome element homologies between D. subobscura, D. pseudoobscura, D. persimilis, and D. miranda. Furthermore, we were able to identify the chromosomal elements of D. obscura, D. ambigua, and D. subsilvestris. Of special interest was the localization of the two D. melanogaster-derived representatives of the tandemly repetitive genes, cDm500 and 12D8. In contrast to the findings with the element-specific probes, the localizations of the repetitive genes varied in the various species. Whereas D. melanogaster, D. subobscura, D. pseudoobscura, D. persimilis, and D. miranda showed only one strong block of label in the cross in situ hybridizations with cDm500, three labeling blocks were found on two elements for both D. ambigua and D. obscura. The two labeling blocks on one element occur in very close proximity, but are clearly separated in both species by cytologically detectable chromosomal material. We used the distribution of the cDm500 labeling sites to postulate a series of chromosomal rearrangements involved in the karyotype evolution of the analyzed species. Our results support the conclusion that the chromosomal elements retain their essential identity and that the observed gross structural rearrangements are due to fusions and paracentric or pericentric inversions. Cytologically obvious translocations were not recorded and are considered by us to be rare. The frequently occurring translocations of the tandemly repeated gene clusters observed in this study are probably due to a different mechanism, which may be an intrinsic property of this category of genes.This paper is dedicated to Prof. Hans Bauer on the occasion of his 80th birthday with our best wishes  相似文献   

19.
Five natural samples of a recent South America invader, the drosophilid Zaprionus indianus, were investigated with the isofemale line technique. These samples were compared to five African mainland populations, investigated with the same method. The results were also compared to data obtained on mass cultures of other populations from Africa and India. Three quantitative traits were measured on both sexes, wing and thorax length and sternopleural bristle number. We did not find any latitudinal trend among the American samples, while a significant increase in body size with latitude was observed in the Indian and, to a lesser degree, in the African populations. American populations were also characterized by their bigger size. Genetic variability, estimated by the intraclass correlation among isofemale lines, was similar in American and African populations. The intraline, nongenetic variability was significantly less in the American samples, suggesting a better developmental stability, the origin of which is unclear. A positive relationship was evident between intraline variability of size traits and the wing-thorax length correlation. Altogether, our data suggest that the colonizing propagule introduced to Brazil had a fairly large size, preventing any bottleneck effect being detected. The big body size of American flies suggests that they came from a high-latitude African country. The lack of a latitudinal dine in America seems to be related to the short time elapsed since introduction. The very rapid spread of Z. indianus all over South America suggests that it might rapidly invade North America.  相似文献   

20.
Genomic copy numbers and the rates of movement of nine families of transposable elements (TEs) of Drosophila melanogaster were estimated in two sets of mutation accumulation lines: Beltsville and Madrid. Southern blotting was used to screen a large number of samples from both genetic backgrounds for TEs. The Madrid lines were also screened by in situ hybridization of TEs to polytene chromosomes, in order to obtain more detailed information about the behaviour of TEs in the euchromatin. Southern blotting data provided evidence of insertions and excision events in both genetic backgrounds, occurring at rates of approximately 10(-5) and 10(-6) per element copy per generation, respectively. In contrast, in situ data from the Madrid background presented a completely different picture, with no evidence for excisions, and a significantly higher rate of transposition (1.01 x 10(-4)). Direct comparison of the two data sets suggests that the Southern blotting technique had serious deficiencies: (i) it underestimated element abundance; (ii) it revealed less than 30% of the new insertions detected by in situ hybridization; and (iii) changes in the size of restriction fragments from any source were spuriously identified as simultaneous insertion-excision events. Our in situ data are consistent with previous studies, and suggest that selection is the main force controlling element spread by transposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号