首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the toxic effects of microcystins on mitochondria of liver and heart of rabbit in vivo. Rabbits were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 12.5 and 50 MC-LReq. microg/kg bw, and the changes in mitochondria of liver and heart were studied at 1, 3, 12, 24 and 48 h after injection. MCs induced damage of mitochondrial morphology and lipid peroxidation in both liver and heart. MCs influenced respiratory activity through inhibiting NADH dehydrogenase and enhancing succinate dehydrogenase (SDH). MCs altered Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities of mitochondria and consequently disrupted ionic homeostasis, which might be partly responsible for the loss of mitochondrial membrane potential (MMP). MCs were highly toxic to mitochondria with more serious damage in liver than in heart. Damage of mitochondria showed reduction at 48 h in the low dose group, suggesting that the low dose of MCs might have stimulated a compensatory response in the rabbits.  相似文献   

2.
Two full-length cDNAs encoding glutathione S-transferase (GST) were cloned and sequenced from the hepatopancreas of planktivorous silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis). The silver carp and bighead carp GST cDNA were 920 and 978 bp in length, respectively, and both contained an open reading frame that encoding 223 amino acids. Partial GST cDNA sequences were also obtained from the liver of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius auratu), mud carp (Cirrhinus molitorella), and tilapia (Oreochromis nilotica). All these GSTs could be classified as alpha-class GSTs on the basis of their amino acid sequence identity with other species. The three-dimensional structure of the silver carp GST was predicted using a computer program, and was found to fit the classical two-domain GST structure. Using the genome walker method, a 875-bp 5'-flanking region of the silver carp GST gene was obtained, and several lipopolysaccharide (LPS) response elements were identified in the promoter region of the phytoplanktivorous fish GST gene, indicating that the GST gene expression of this fish might be regulated by LPS, released from the toxic blue-green algae producing microcystins. To compare the constitutive expression level of the liver GST gene among the six freshwater fishes with completely different tolerance to microcystins, beta-actin was used as control and the ratio GST/beta-actin mRNA (%) was determined as 130.7 +/- 6.6 (grass carp), 103.1 +/- 8.9 (bighead carp), 92.6 +/- 15.0 (crucian carp), 72.3 +/- 7.8 (mud carp), 58.8 +/- 11.5 (silver carp), and 33.6 +/- 13.7 (tilapia). The constitutive expression level of the liver GST gene clearly shows that all the six freshwater fishes had a negative relationship with their tolerance to microcystins: high-resistant fishes (phytoplanktivorous silver carp and tilapia) had the lowest tolerance to microcystins and the high-sensitive fish (herbivorous grass carp) had the highest tolerance to microcystins. Taken together with the reciprocal relationship of constitutive and inducible liver GST expression level in some of the tested fish species to microcystin exposure, a molecular mechanism for different microcystin detoxification abilities of the warm freshwater fishes was discussed.  相似文献   

3.
黄颡鱼饲料中添加谷胱甘肽降低藻毒素毒性作用的研究   总被引:1,自引:0,他引:1  
通过60d的生长实验研究饲料中不同含量的谷胱甘肽(GSH)对黄颡鱼(Pelteobagrus fulvidraco Richardson)摄食含蓝藻粉饲料后的毒性保护作用。共配制6种近似等氮等能(粗蛋白45%,总能19.5kJ/g)的实验饲料。以不添加蓝藻粉、不添加GSH的饲料组作为正对照,其他5种饲料均添加7.5%的藻粉,微囊藻毒素(Microc ystins,MCs)含量约为58μg/g,GSH添加量分别为:0(负对照)、200、500、800和1400mg/kg。实验结果表明,第1至第30天时,负对照组与正对照组实验鱼的摄食率无显著性差异(P>0.05)。第31至第60天时,负对照组实验鱼的摄食率显著高于正对照和其他GSH添加组(P0.05),但各GSH添加组肾脏中GSH显著低于正对照而高于负对照(P<0.05)。200、500和800mg/kg GSH添加组肝脏和肌肉中丙二醛(MDA)含量显著低于负对照(P<0.05)。在整个实验期间,随着饲料中GSH含量的增加,肝脏、肾脏、全肠和肌肉中微囊藻毒素含量先显著下降,当GSH添加量为500和800mg/kg时达到稳定,直至GSH添加量为1400mg/kg时显著上升。根据对黄颡鱼增重,肝脏和肌肉中MDA的含量以及组织中毒素的分析,在饲料中添加500-800mg/kg GSH可以有效缓解黄颡鱼饲料中微囊藻毒素的毒性。    相似文献   

4.
Li GZ  Liang XF  Yao W  Liao WQ  Zhu WF 《BMB reports》2008,41(3):204-209
The cDNAs encoding glutathione peroxidase (GPx) were cloned and sequenced from the liver of three Chinese carps with different tolerance to hepatotoxic microcystins, phytoplanktivorous silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis), and herbivorous grass carp (Ctenopharyngodon idellus). Using genome walker method, a 750 bp 5'-flanking region of the silver carp GPx gene was obtained, and several potential regulatory elements were identified in the promoter region of the GPx gene. The silver carp GPx gene was widely expressed in all tissues examined. Despite phylogenetic analysis, assigning this newly described carp GPx to the group of mammalian GPx2, the carp GPx seems more similar to GPx1 from a physiological point of view. The constitutive expression pattern of the three carp liver GPx gene, shows a positive relationship with their tolerance to microcystins.  相似文献   

5.
6.
7.
淡水鱼类可溶性谷胱甘肽S-转移酶(sGST)在微囊藻毒素去毒代谢过程中具有独特 的关键作用,因而也称为微囊藻毒素去毒酶. 从淡水食毒藻鱼类鲢鱼(Hypophthalmichthys molitrix)肝脏通过简并引物克隆微囊藻毒素去毒酶基因cDNA核心序列,应用5′RACE和3′RACE技术分别扩增该序列的5′末端和3′末端序列,最后通过序列拼接获得鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全序列. 序列分析结果表明,鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全长920 bp,其中5′-UTR长74 bp,3′-UTR长174 bp,编码区长672 bp,编码223个氨基酸. 应用基因组步行法,在鲢鱼克隆得到淡水鱼类微囊藻毒素去毒酶基因5′侧翼区878 bp序列. 与哺乳动物及海水鱼sGST基因不同,鲢鱼微囊藻毒素去毒酶基因的5′侧翼区,发现存在多个脂多糖反应元件(LPSRE),表明来源于毒藻的脂多糖可能对鲢鱼微囊藻毒素去毒酶基因表达有潜在调控作用.  相似文献   

8.
A sensitive and selective liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantitative determination of microcystin-LR (MC-LR) and its glutathione conjugate (MC-LR-GSH) in fish tissues. The analytes were extracted from fish liver and kidney using 0.01M EDTA-Na(2)-5% acetic acid, followed by a solid-phase extraction (SPE) on Oasis HLB and silica cartridges. High-performance liquid chromatography (HPLC) with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MC-LR and its glutathione conjugate in fish liver and kidney. Recoveries of analytes were assessed at three concentrations (0.2, 1.0, and 5microg g(-1) dry weight [DW]) and ranged from 91 to 103% for MC-LR, and from 65.0 to 75.7% for MC-LR-GSH. The assay was linear within the range from 0.02 to 5.0microg g(-1) DW, with a limit of quantification (LOQ) of 0.02microg g(-1) DW. The limit of detection (LOD) of the method was 0.007microg g(-1) DW in both fish liver and kidney. The overall precision was determined on three different days. The values for within- and between-day precision in liver and kidney were within 15%. This method was applied to the identification and quantification of MC-LR and its glutathione conjugate in liver and kidney of fish with acute exposure of MC-LR.  相似文献   

9.
Hepatic glutathione (GSH) plays an important role in the detoxification of reactive molecular intermediates. Because of evidence that the intrahepatic turnover of glutathione in the rat may be largely accounted for by efflux from hepatocytes into the general circulation, the quantitation of plasma GSH turnover in vivo could provide a noninvasive index of hepatic glutathione metabolism. We developed a method to estimate plasma glutathione turnover and clearance in the intact, anesthetized rat using a 30-min unprimed, continuous infusion of 35S-labelled GSH. A steady state of free plasma glutathione specific radioactivity was achieved within 10 min, as determined by high-pressure liquid chromatography with fluorometric detection after precolumn derivatization of the plasma samples with monobromobimane. The method was tested after two treatments known to alter hepatic GSH metabolism: 90 min after intraperitoneal injection of 4 mmol/kg buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, and after a 48-h fast. Liver glutathione concentration (mean +/- SEM) was 5.00 +/- 0.53 mumol/g wet weight in control rats. It decreased to 3.10 +/- 0.35 mumol/g wet weight after BSO injection and to 3.36 +/- 0.14 mumol/g wet weight after fasting (both p less than 0.05). Plasma glutathione turnover was 63.0 +/- 7.46 nmol.min-1.100 g-1 body weight in control rats, 35.0 +/- 2.92 nmol.min-1.g-1 body weight in BSO-treated rats, and 41.7 +/- 2.28 nmol.min-1.g-1 body weight after fasting (both p less than 0.05), thus reflecting the hepatic alterations. This approach might prove useful in the noninvasive assessment of liver glutathione status.  相似文献   

10.
Plants of Indian mustard (Brassica juncea L.) were exposed to different concentrations (15, 30, 60, 120 microM) of (Cd, Cr, Cu, Pb) for 28 and 56 d for accumulation and detoxification studies. Metal accumulation in roots and shoots were analyzed and it was observed that roots accumulated a significant amount of Cd (1980 microg g(-1) dry weight), Cr (1540 microg g(-1) dry weight), Cu (1995 microg g(-1) dry weight), and Pb (2040 microg g(-1) dry weight) after 56 d of exposure, though in shoot this was 1110, 618, 795, and 409 microg g(-1) dry weight of Cd, Cr, Cu, and Pb, respectively. In order to assess detoxification mechanisms, non-protein thiols (NP-SH), glutathione (GSH) and phytochelatins (PCs) were analyzed in plants. An increase in the quantity of NP-SH (9.55), GSH (8.30), and PCs (1.25) micromol g(-1) FW were found at 15 microM of Cd, however, a gradual decline in quantity was observed from 15 microM of Cd onwards, after 56 d of exposure. For genotoxicity in plants, cytogenetic end-points such as mitotic index (MI), micronucleus formation (MN), mitotic aberrations (MA) and chromosome aberrations (CA) were examined in root meristem cells of B. juncea. Exposure of Cd revealed a significant (P < 0.05) inhibition of MI, induction of MA, CA, and MN in the root tips for 24 h. However, cells examined at 24 h post-exposure showed concentration-wise recovery in all the endpoints. The data revealed that Indian mustard could be used as a potential accumulator of Cd, Cr, Cu, and Pb due to a good tolerance mechanisms provided by combined/concerted action of NP-SH, GSH, and PCs. Also, exposure of Cd can cause genotoxic effects in B. juncea L. through chromosomal mutations, MA, and MN formation.  相似文献   

11.
Abstract

Alcoholic liver disease is caused mainly by free radicals. Ascorbic acid (AA) and glutathione (GSH) are the major water-soluble antioxidants in the liver. The impact of AA supplementation on GSH, AA and activities of GSH-dependent enzymes in alcoholic guinea pigs was studied and was compared with alcohol abstention. Guinea pigs were administered ethanol at a dose of 4 g/kg body weight (b.wt)/day for 90 days. After 90 days, alcohol administration was stopped and one-half of the ethanol-treated animals were supplemented with AA (25 mg/100 g b.wt) for 30 days and the other half was maintained as the abstention group. There was a significant increase in the activities of alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in the serum of the ethanol group. In addition, a significant decrease in the GSH content, activities of GSH peroxidase, GSH reductase, and increased activity of GSH-S-transferase were observed in the liver of the ethanol group. Histopathological analysis and triglycerides content in the liver of the ethanol group showed induction of steatosis. But AA supplementation and abstention altered the changes caused by ethanol. However, maximum protective effect was observed in the AA-supplemented group indicating the ameliorative effect of AA in the liver.  相似文献   

12.
针对饮用水中消毒副产物与微囊藻毒素的低剂量复合污染问题,采用离体细胞培养诱导方法,以草鱼淋巴细胞为暴露受体,研究了MCLR、MCRR两种微囊藻毒素和CHClBr2、CHCl2Br两种消毒副产物的单独与联合毒效应.结果表明:4种污染物在试验浓度下暴露2 h即能使草鱼淋巴细胞发生凋亡,且呈显著的剂量-效应关系;1 nmol·L-1MCLR、MCRR分别和1~100 nmol·L-1的CHCl2Br、CHClBr2的联合作用均表现为相加作用,并且均呈显著的剂量-效应关系.草鱼淋巴细胞凋亡率可作为一种有效的指标来评价微囊藻毒素及消毒副产物复合污染引起的细胞毒性.  相似文献   

13.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

14.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

15.
16.
The aim of this study was tracing of changes in the activity of glutathione peroxidase (GSHPx), glutathione transferase (GSH S-Tr), aspartate aminotransferase (AspAT) and alanine aminotransferase (A1AT) in the brain as a result of diet enrichment with antioxidants: selenium (Se), vitamin E and vitamin B15 (pangamic acid). The experiment was carried out on Wistar rats with initial body weight 150 g. Following prolonged enrichment of diet with Se (0.1 ppm of sodium selenite), vitamin E (6 mg/100 g of diet) and vitamin B15 (2.5 mg/100 g of diet) the following results were obtained. The activity of GSHPx in brain microsomes was not changed after one year of vitamin E administration when it was measured against hydrogen hydroxide and against cumene hydrochloride; vitamin E administration increased the activity of GSH S-Tr in the cytoplasmic fraction of brain cells. Diet enrichment with selenium increased after 12 and 18 months the activity of GSHPx measured against both substrates, and GSH S-Tr activity increased considerably. Presence of vitamin B15 in diet reduced GSHPx activity after one-year or longer administration, after 18 months the activity of GSH S-Tr was reduced also. No changes were noted in the activity of AspAT and A1AT.  相似文献   

17.
The content of lipid peroxidation products--diene conjugates, lipid hydroperoxides, thiobarbituric acid reactive substances (TBARS), vitamins A, E and carotenoids and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in the liver of freshwater fishes of different species (silver carp, grass carp and common carp) in different seasons have been studied. It was established the activity of antioxidant defence system in the liver of fish depends significantly on the season and fish species. In particular, the content of lipid peroxidation products in the liver of freshwater fishes at the beginning of winter and spring was significantly higher compared to their content at the beginning of summer and autumn. The superoxide dismutase and glutathione peroxidase activities in the liver of these fish species at the beginning of winter and spring were significantly lower than at the beginning of summer and autumn while the seasonal changes of catalase activity in the liver of fish are expressed insignificantly. The content of vitamins E, A1, A2 and carotenoids in the liver of fishes of different species at the beginning of winter and spring was significantly lower than at the beginning of summer and autumn. The content of lipid peroxidation products and vitamins E, A1 and A2 in the liver of common carp is significantly lower than in the liver of silver carp and grass carp and species differences in antioxidant enzymes activity are insignificant.  相似文献   

18.
Cyanobacteria synthesize several types of bioactive secondary metabolites. Anabaena strain 90 produces three types of bioactive peptides, microcystins (inhibitors of protein phosphatases 1 and 2A), anabaenopeptilides, and anabaenopeptins (serine protease inhibitors). To investigate the role of the anabaenopeptilides in Anabaena, wild-type strain 90 (WT) and its anabaenopeptilide deficient mutant (MU) were cultured with various light and phosphate levels to evaluate the effects and coeffects of these growth factors on the concentrations of the three classes of peptides and the growth characteristics. WT and MU grew in comparable ways under the different growth conditions. The total peptide concentration in WT was significantly higher than that in MU (2.5 and 1.4 microg/mg [dry weight], respectively). Interestingly, the average concentration of anabaenopeptins was significantly higher in MU than in WT (0.59 and 0.24 microg/mg [dry weight], respectively). The concentration of microcystins was slightly but not statistically significantly higher in MU than in WT (1.0 and 0.86 microg/mg [dry weight], respectively). In WT, the highest peptide concentrations were usually found after 13 days in cultures grown at medium light intensities (23 micromol m(-2) s(-1)) and with the highest phosphate concentrations (2,600 microg liter(-1)). In MU, the highest peptide concentrations were found in 13-day-old cultures grown at medium light intensities (23 micromol m(-2) s(-1)) and with phosphate concentrations greater than 100 microg liter(-1). The higher concentrations of anabaenopeptins in MU may compensate for the absence of anabaenopeptilides. These findings clearly indicate that these compounds may have some linked function in the producer organism, the nature of which remains to be discovered.  相似文献   

19.
Recently, eutrophication has induced severe cyanobacterial blooms in the Naktong River, the second largest river of Korea. In the present study, lipid peroxidation and the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were evaluated in the liver of loach (Misgurnus mizolepis) that were orally exposed to a low dose of Microcystis through dietary supplementation with bloom scum. Loach received 75 mg of dry cells/kg body weight mass (equal to 10 microg microcystin-RR/kg body mass), for 28 days under controlled conditions. Antioxidant enzymatic activity and lipid peroxidation were measured after termination of exposure. The activities of antioxidant enzyme were significantly increased in the livers of toxin-exposed loach after 28 days of exposure, as compared to control fish. However, lipid peroxidation remained stable in both groups. These results suggest that antioxidant enzymes were able to eliminate oxidative stress induced by low concentrations of microcystins and to prevent increased lipid peroxidation in the liver of loach.  相似文献   

20.
Heat shock protein 70 (HSP70) protect cell from oxidative stress by preventing the irreversible loss of vital proteins and facilitating their subsequent regeneration. Silver carp (Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon idellus), and Nile tilapia (Oreochromis nilotica) are three warm freshwater fishes with differential tolerance to microcystin-LR (MC-LR). Full-length cDNAs encoding the HSP70 were cloned from the livers of the three fishes. The HSP70 cDNAs of silver carp, grass carp, and Nile tilapia were 2356, 2348, and 2242 bp in length and contained an open-reading frame of 1950 bp (encoding a polypeptide of 649 amino acids), 1950 bp (649 amino acids), and 1917 bp (638 amino acids), respectively. Like mammalian HSP70, the HSP70 of the three fish was also composed of an ATPase domain from residues 1 to 383 (44 kDa), substrate peptide binding domain from residues 384 to 544 (18 kDa), and a C-terminus domain from residues 545 to 649 (10 kDa). The relatively high conservation of HSP70 sequences among different vertebrates is consistent with their important role in fundamental cellular processes. Using beta-actin as an external control, RT-PCR within the exponential phase was conducted to determine the constitutive and inducible expression level of HSP70 gene among the three fishes (6-12 g) intraperitoneally injected with MC-LR (50 μg kg(-1) body weight). Both constitutive and inducible liver mRNA levels of the fish HSP70 genes showed positive relationships with their tolerance to MC-LR: highest in Nile tilapia, followed by silver carp, and lowest in grass carp. The differential expression pattern of liver HSP70 genes in the three fish indicated a potential role of HSP70 in the detoxification process of MC-LR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号