首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Examination of changes occurring in the zero-stress state of an organ provides a way to study cellular growth in the organ due to change of physical stresses. The zero-stress state of the aorta is not a tube. It is a sector with an opening angle that varies with the location on the aorta and changes with cellular remodeling. Blood vessel remodeling can be induced by imposing a constriction on the abdominal aorta by a metal clip (aortic banding), which causes an increase of blood pressure, hypertrophy of the aortic wall, and large change of opening angle. The correlation of the opening angle with the blood vessel wall thickness and blood pressure changes in rat's aorta due to aortic banding is presented in this report. The opening angle changes daily following the aortic banding. Blood pressure rises in vessels of the upper body, but that in the lower body decreases at first and then rises to an asymptotic value. Blood vessel wall thickness increases in rough proportion to blood pressure. Vessel diameter changes also. But the most dramatic is the course of change of the zero-stress state. Typically, the time to reach 50 percent of asymptotic hypertrophy of blood vessel wall thickness is about 3-5 days. The corresponding time for blood pressure is about 7 days. The opening angle of the zero-stress state, however, increases rapidly at first, reaches a peak in about 2 to 4 days, then decreases gradually to a reduced asymptote. The exact values of the time constants depend on the location along the aortic tree. In general, the course of change of residual strain is very different from those of the blood pressure and the blood vessel wall thickness.  相似文献   

2.
The arterial wall contains a significant amount of charged proteoglycans, which are inhomogeneously distributed, with the greatest concentrations in the intimal and medial layers. The hypothesis of this study is that the transmural distribution of proteoglycans plays a significant role in regulating residual stresses in the arterial wall. This hypothesis was first tested theoretically, using the framework of mixture theory for charged hydrated tissues, and then verified experimentally by measuring the opening angle of rat aorta in NaCl solutions of various ionic strengths. A three-dimensional finite element model of aortic ring, using realistic values of the solid matrix shear modulus and proteoglycan fixed-charge density, yielded opening angles and changes with osmolarity comparable to values reported in the literature. Experimentally, the mean opening angle in isotonic saline (300 mosM) was 15 +/- 17 degrees and changed to 4 +/- 19 degrees and 73 +/- 18 degrees under hypertonic (2,000 mosM) and hypotonic (0 mosM) conditions, respectively (n = 16). In addition, the opening angle in isotonic (300 mosM) sucrose, an uncharged molecule, was 60 +/- 16 degrees (n = 11), suggesting that the charge effect, not cellular swelling, was the major underlying mechanism for these observations. The extent of changes in opening angle under osmotic challenges suggests that transmural heterogeneity of fixed-charge density plays a crucial role in governing the zero-stress configuration of the aorta. A significant implication of this finding is that arterial wall remodeling in response to altered wall stresses may occur via altered deposition of proteoglycans across the wall thickness, providing a novel mechanism for regulating mechanical homeostasis in vascular tissue.  相似文献   

3.
Information on the layer-specific residual deformations of aortic tissue and how these vary throughout the vessel is important for understanding the regionally-varying aortic functions and pathophysiology, but not so much can be found in the literature. Toward this end, porcine aortas were sectioned into eighteen rings, with one ring from each anatomical position radially cut to obtain the zero-stress state for the intact wall and the other ring dissected into intimal-medial and adventitial layers; these rings were then radially cut to reach the zero-stress state for the intima-media and adventitia. Peripheral variations in internal/external circumferences, thickness, and opening angle of the intact wall and its layers were measured through image analysis at the no-load and zero-stress states. Intact wall and layer circumferences at both states significantly declined along the aorta, as did intact wall and intimal-medial but not adventitial thickness. Adventitia exhibited the greatest opening angles, approaching 180 deg all over the aorta. The opening angles of the intima-media and intact wall were quite similar, with the highest values in the ascending aorta, the lowest at the diaphragm, and increasing subsequently. Bending-related residual stretches were released by radial cutting that were compressive internally and tensile externally, displaying distinct axial variation for the intima-media and intact wall, and non-significant variation for the adventitia. Evidence is provided for the release upon layer separation of compressive stretches in the intima-media and of tensile stretches in the adventitia, whose values were smallest in the descending thoracic aorta and highest near the iliac artery bifurcation.  相似文献   

4.
Zhao J  Lu X  Zhuang F  Gregersen H 《Biorheology》2000,37(5-6):385-400
Morphometric and passive biomechanical properties were studied in isolated segments of the thoracic and abdominal aorta, left common carotid artery, left femoral artery and the left pulmonary artery in 20 non-diabetic and 28 streptozotocin (STZ)-induced diabetic rats. The diabetic and non-diabetic rats were divided into groups living 1, 4, 8, and 12 weeks after the induction of diabetes (n = 7 for each diabetic group) or sham injection (n = 5 for each group). The mechanical test was performed as a distension experiment where the proximal end of the arterial segment was connected via a tube to the container used for applying pressures to the segment and the distal end was left free. The vessel diameter and length were obtained from digitized images of the arterial segments at pre-selected pressures and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data and from the zero-stress state data. The zero-stress state was obtained by cutting vessel rings radially causing the rings to open up into a sector. Diabetes was associated with pronounced morphometric changes, e.g., wall thickness. With respect to the biomechanical data, the opening angle increased and reached a plateau in 4 weeks after which it decreased again (p < 0.05). The opening angle was smallest in the thoracic aorta and largest in the pulmonary artery. Furthermore, it was found that the circumferential stiffness of the arteries studied increased with the duration of diabetes. In the longitudinal direction significant differences were found 8 weeks after injection of STZ in all arteries except the pulmonary artery. In the 12 weeks group, the femoral artery was stiffest in the circumferential direction whereas the thoracic aorta was stiffest in the longitudinal direction. The accumulated serum glucose level correlated with the arterial wall thickness and elastic modulus (correlation coefficient between 0.56 and 0.81).  相似文献   

5.
Species dependence of the zero-stress state of aorta: pig versus rat.   总被引:12,自引:0,他引:12  
The zero-stress state of an aorta can be characterized by the angle with which each segment of the vessel opens up when it is cut radially. The opening angle varies with the region of the aorta: significantly with respect to the axial location, less significantly with respect to polar angle of the radial cut. Both pig and rat aortas have large opening angles in the neighborhood of 130 deg in the aortic arch region. In the thoracic region, the species difference is evident. The opening angle of the pig aorta in the middle thoracic region is rather constant in the neighborhood of 60 deg. The opening angle of the rat aorta in the thoracic region varies considerably, decreasing to 10 deg at the lower end of the thoracic region. In the abdominal region the opening angle of the pig increases from 60 to about 80 deg, that of the rat increases from about 10 to 90 deg. The potassium ion has effect on vascular smooth muscle, but has little effect on the opening angle. This suggests that the opening angle is not sensitive to smooth muscle contraction, similar to a previously known result that the opening angle is not affected by papaverine. The vessel wall thickness and vessel diameter were measured. It is shown that the ratio of the wall thickness to diameter of the pig is considerably larger than that of the rat throughout the aorta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The objective of our study was to study the effect of danshen, a Chinese herbal medicine known to prevent hypertension, on the zero-stress state of rat's abdominal aorta. The zero-stress state of a blood vessel represents the release of residual stress on the vessel wall, and is the basic configuration of blood vessel affected solely by intrinsic parameters. At the in vivo state, the rat's abdominal aorta was subjected to blood pressure and flow and longitudinal stress. After dissecting from the abdominal aorta, the aortic specimens were cut into small rings at no-load state, in which the internal pressure, external pressure, and longitudinal stress in a short ring-shaped segment were all zero; by cutting radially to release the residual stress in the wall, the vessel ring opened up into a sector quickly, and the sector's configuration would not change at 20 min after cutting and was defined as the zero-stress state of a blood vessel, which was characterized by its residual strain and opening angle. Then aqueous extract of danshen prepared with methanol was added in the Krebs solution, and the changes of the aorta's zero-stress state were monitored by taking photos routinely for analysis to determine the opening angle and residual strain. Additionally, other sets of samples were tested in a Norepinephrine-Krebs solution as positive control or a Krebs solution as negative control, respectively. It was demonstrated that the zero-stress state of rat's abdominal aorta was affected by danshen extract and norepinephrine in two different patterns, while the Krebs solution did not have similar effects. The present work provides a new approach to study the anti-hypertension effect and mechanism of danshen.  相似文献   

7.
Gregersen H  Zhao J  Lu X  Zhou J  Falk E 《Biorheology》2007,44(2):75-89
Atherosclerosis is the most frequent cause of death and severe chronic disability in North America and Europe. The atherosclerosis-prone apolipoprotein E (apoE)-deficient mice contain the entire spectrum of lesions observed during atherogenesis. Significant remodelling of the artery occurs in atherosclerosis. The aim was to study the remodelling of the zero-stress state of the aorta in apoE-deficient mice up to 56 weeks of age. Normal wild-type mice served as control groups. The mice were euthanised at ages 10, 28 and 56 weeks and tissue rings where excised from several locations along the aorta. The rings where photographed in the no-load state (without any external forces applied), then cut radially to obtain the zero-stress state and photographed again. The cross-sectional wall area and wall thickness increased over time in apoE-deficient mice compared to controls (P<0.001). The residual strains at the inner and outer surface varied as function of aortic location both in controls and apoE-deficient mice (P<0.001). From age 28 to age 56 weeks a gradual increase in positive strain at the outer surface and negative strain at the inner surface was found in the apoE-deficient mice when compared to age-matched control mice (P<0.001). Furthermore, the inner residual strain in the plaque location was significantly smaller than in the non-plaque location in the rings with atherosclerotic plaques (P<0.001). The change over time of the opening angle was especially pronounced in the aortic arch. The opening angle increased to app. 200 degrees in the aortic arch in apoE-deficient mice at 56 weeks of age whereas it in age-matched controls was app. 125 degrees. Correspondingly, atherosclerotic plaques were prominent in the apoE-deficient mice, especially at week 56 in the ascending aorta and the aortic arch. In conclusion, a pronounced remodelling of the biomechanical properties in aorta was found in apoE-deficient mice. The stress gradient across the vessel wall in the plaque region is likely larger in vivo due to the smaller residual strain in the plaque area.  相似文献   

8.
The hemodynamic conditions of aorta are relatively uniform prenatally and become more heterogeneous postnatally. Our objective was to quantify the heterogeneity of geometry and mechanical properties during growth and development. To accomplish this objective, we obtained a systematic set of data on the geometry and mechanical properties along the length of mouse aorta during postnatal development. C57BL/6 mice of ages 1-33 days were studied. The ascending aorta was cannulated in situ and preconditioned with several cyclic changes in pressure. We investigated the axial variations of geometry (diameter and length) and mechanical properties (stress-stain relation, elastic modulus and compliance) of the mouse aorta from the aortic valve to the common iliac. Our results show that the arterial blood pressure of mice increased from approximately 30 to 80 mmHg during the first 2 wk of life. The stretch ratio, diameter, wall (intima-media) thickness, and total lumen volume of mouse aorta increased with age. The aorta was transformed from a cylindrical tube at birth to a tapered structure during growth. Furthermore, we found the mechanical properties were fairly uniform along the length of the aorta at birth and become more nonuniform with age. We conclude that the rapid change of blood pressure and blood flow after birth alter the geometric and mechanical properties differentially along the length of the aorta. Hence, the axial nonuniformity of the aorta increases as the organ becomes more specialized during growth and development.  相似文献   

9.
Intestinal stress-strain distributions are important determinants of intestinal function and are determined by the mechanical properties of the intestinal wall, the physiological loading conditions and the zero-stress state of the intestine. In this study the distribution of morphometric measures, residual circumferential strains and stress-strain relationships along the rat large intestine were determined in vitro. Segments from four parts of the large intestine were excised, closed at both ends, and inflated with pressures up to 2kPa. The outer diameter and length were measured. The zero-stress state was obtained by cutting rings of large intestine radially. The geometric configuration at the zero-stress state is of fundamental importance because it is the basic state with respect to which the physical stresses and strains are defined. The outer and inner circumferences, wall thickness and opening angle were measured from digitised images. Subsequently, residual strain and stress-strain distributions were calculated. The wall thickness and wall thickness-to-circumference ratio increased in the distal direction. The opening angle varied between approximately 40 and approximately 125 degrees with the highest values in the beginning of proximal colon (F=1.739, P<0.05). The residual strain at the inner surface was negative indicating that the mucosa-submucosal layers of the large intestine in no-load state are in compression. The four segments showed stress-strain distributions that were exponential. All segments were stiffer in longitudinal direction than in the circumferential direction (P<0.05). The transverse colon seemed stiffest both in the circumferential and longitudinal directions. In conclusion, significant variations were found in morphometric and biomechanical properties along the large intestine. The circumferential residual strains and passive elastic properties must be taken into account in studies of physiological problems in which the stress and strain are important, e.g. large intestinal bolus transport function.  相似文献   

10.
目的:探讨长期四氢生物喋呤(BH4)治疗对自发性高血压大鼠(SHR)血管形态及血管力学性质的影响;方法:选用4周龄雄性SHR36只,随机分为实验组和对照组,每组18只。实验组每周2次腹腔注射BH420mg/kg,对照组注射等容量生理盐水,于实验第4、16和26周龄时各取6只测量动脉收缩压(SBP),并使用计算机图像分析的方法分别测量主动脉血管零应力状态张开角、压力-直径关系及肠系膜动脉血管的壁/腔比值。结果:至BH4治疗后的第16和26周龄,SHR的SBP明显降低(P〈0.01);实验组SHR胸主动脉张开角显著减小(P〈0.01),压力-直径(P-D)关系曲线上移;实验组肠系膜动脉三级分支血管壁/腔(W/L)值减小(P〈0.05)。结论:BH4可以减弱由于长期高血压所导致的血管肥厚和管腔狭窄,恢复血管弹性。  相似文献   

11.
Understanding how arterial remodeling changes the mechanical behavior of pulmonary arteries (PAs) is important to the evaluation of pulmonary vascular function. Early and current efforts have focused on the arteries' histological changes, their mechanical properties under in vitro mechanical testing, and their zero-stress and no-load states. However, the linkage between the histology and mechanical behavior is still not well understood. To explore this linkage, we investigated the geometry, residual stretch, and histology of proximal PAs in both adult rat and neonatal calf hypoxic models of pulmonary hypertension (PH), compared their changes due to chronic hypoxia across species, and proposed a two-layer mechanical model of artery to relate the opening angle to the stiffness ratio of the PA outer to inner layer. We found that the proximal PA remodeling in calves was quite different from that in rats. In rats, the arterial wall thickness, inner diameter, and outer layer thickness fraction all increased dramatically in PH and the opening angle decreased significantly, whereas in calves, only the arterial wall thickness increased in PH. The proposed model predicted that the stiffness ratio of the calf proximal PAs changed very little from control to hypertensive group, while the decrease of opening angle in rat proximal PAs in response to chronic hypoxia was approximately linear to the increase of the stiffness ratio. We conclude that the arterial remodeling in rat and calf proximal PAs is different and the change of opening angle can be linked to the change of the arterial histological structure and mechanics.  相似文献   

12.
The cell volume, which controls numerous cellular functions, is theoretically linearly related with the inverse osmolarity. However, deviations from this law have often been observed. In order to clarify the origin of these deviations we electronically measured the mean cell volume of rat glioma cells under three different experimental conditions, namely: at different osmolarities and constant NaCl concentration; at different NaCl concentrations and constant osmolarity and at different osmolarities caused by changes in NaCl concentration. In each condition, the osmolarity was maintained constant or changed with NaCl or mannitol. We showed that the cell volume was dependent on both the extracellular osmolarity and the NaCl concentration. The relationship between cell volume, osmolarity and NaCl concentration could be described by a new equation that is the product of the Boyle-van't Hoff law and the Michaelis-Menten equation at a power of 4. Together, these results suggest that in hyponatriemia, the cell volume deviates from the Boyle-van't Hoff law because either the activity of aquaporin 1, expressed in glioma cells, is decreased or the reduced NaCl influx decreases the osmotically obliged influx of water.  相似文献   

13.
The zero-stress state of a blood vessel has been extensively studied because it is the reference state for which all calculations of intramural stress and strain must be based. It has also been found to reflect nonuniformity in growth and remodeling in response to chemical or physical changes. The zero-stress state can be characterized by an opening angle, defined as the angle subtended by two radii connecting the midpoint of the inner wall. All prior studies documented the zero-stress state or opening angle with no regard to duration of the no-load state. Our hypotheses were that, given the viscoelastic properties of blood vessels, the zero-stress state may have "memory" of prior circumferential and axial loading, i.e., duration of the no-load state influences opening angle. To test these hypotheses, we considered ring pairs of porcine coronary arteries to examine the effect of duration in the no-load state after circumferential distension. Our results show a significant reduction in opening angle as duration of the no-load state increases, i.e., vessels that are reduced to the zero-stress state directly from the loaded state attain much larger opening angles at 30 min after the radial cut than rings that are in the no-load state for various durations. To examine the effect of axial loading, we found similar reductions in opening angle with duration in the no-load from the in situ state, albeit the effect was significantly smaller than that of circumferential loading. Hence, we found that the zero-stress state has memory of both circumferential and axial loading. These results are important for understanding viscoelastic properties of coronary arteries, interpretation of the enormous data on the opening angle and strain in the literature, and standardization of future measurements on the zero-stress state.  相似文献   

14.
Data on morphological and biomechanical remodelling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10 cm H2O. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner.  相似文献   

15.
M Hasegawa  Y Watanabe 《Biorheology》1988,25(1-2):147-156
The tension-strain, stress-strain and stress relaxation curves of longitudinal and circumferential strips of proximal thoracic aortas in normal and WHHL rabbits of different ages were determined using a tensile testing instrument. Wall distensibility of longitudinal and circumferential strips was the greatest in the normal aorta and decreased with advancing age in the atherosclerotic aorta. The wall thickness of the atherosclerotic aorta was positively related to age with a correlation coefficient of 0.66(p less than 0.01). The incremental elastic moduli calculated from the stress-strain curves increased with advancing age in the atherosclerotic aorta. Accordingly, the decreased distensibility of the atherosclerotic wall may be due to the increased wall thickness caused by the intimal thickening as well as to the increase in wall stiffness caused by the increased elastic modulus. The viscoelasticity of the atherosclerotic aorta was larger than that of the normal aorta. This reflects the mechanical effect of atherosclerotic changes that occurred in the thickened intima.  相似文献   

16.
The zero-stress state of rat veins and vena cava   总被引:5,自引:0,他引:5  
The zero-stress state of a vein is, like that of an artery, not a closed cylindrical tube, but is a series of segments whose cross-sections are open sectors. An opening angle of each sector is defined as the angle subtended between two radii joining the midpoint of the inner wall to the tips of the inner wall. Data on the opening angles (mean +/- standard deviation) of the veins and vena cava of the rat are presented. For the superior vena cava and subclavian, jugular, facial, renal, common iliac, saphenous, and plantar veins, the opening angle varies in the range of 25 to 75 deg. The inferior vena cava (below the heart), however, has noncircular, nonaxisymmetric cross-sections, a curved axis, and a rapid longitudinal variation of its "diameter"; its zero-stress state is not circular sectors; but the opening angle is still a useful characterization. The mean opening angle of the interior vena cava varies in the range of 40 to 150 deg in the thoracic portion, and 75 to 130 deg in the abdominal portion, with the larger values occurring about the middle of each portion. There are considerable length, diameter reductions, and wall thickening of the vena cava from the homeostatic state to the no-load state in vitro. Physically, the zero-stress state is the basis of the stress analysis of blood vessels. The change of opening angle is a convenient parameter to characterize any nonuniform remodeling of the vessel wall due to changes in physical stress or chemical environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
四氧嘧啶糖尿病大鼠主动脉零应力状态的变化   总被引:4,自引:0,他引:4  
目的和方法:将沿径向切开的糖尿病大鼠及对照大鼠主动脉坏分别转正圩Krebs液中,向其中分别加入缩血管物质及舒血管物质达各种浓度;观察其角度变化。用S-P法对大鼠主动脉壁肌动蛋白进行染色。结果:四氧嘧啶糖尿病大鼠病程4周时主动脉环展开角显著大于对照(P〈0.001)。使用药物后大鼠主动脉坏展开角与使用前相比无明显差异(P〉0.05)。糖尿病大鼠主动脉壁肌动蛋白色较对照组明显加深、染色的光密度显著大于  相似文献   

18.
Stiffening of the aorta with progressing age leads to decrease of aortic compliance and thus to an increase of pulse pressure amplitude. Using a strain energy function (SEF) which takes into account the composition of the arterial wall, we have studied the evolution of key structural components of the human thoracic aorta using data obtained from the literature. The SEF takes into account the wavy nature of collagen, which upon gradual inflation of the blood vessel is assumed to straighten out and become engaged in bearing load. The engagement of the individual fibers is assumed to be distributed log-logistically. The use of a SEF enables the consideration of axial stretch (lambda(z)) and residual strain (opening angle) in the biomechanical analysis. Both lambda(z) and opening angle are known to change with age. Results obtained from applying the SEF to the measurements of aortic pressure-diameter curves indicate that the changes in aortic biomechanics with progressing age are not to be sought in the elastic constants of elastin and collagen or their volume fractions of the aortic wall but moreover in alterations of the collagen mesh arrangement and the waviness of the collagen fibers. In old subjects, the collagen fiber ensemble engages in load bearing much more abruptly than in young subjects. Reasons for this change in collagen fiber dynamics may include fiber waviness remodeling or cross-linkage by advanced glycation end-products (AGE). The abruptness of collagen fiber engagement is also the model parameter that is most responsible for the decreased compliance at progressed ages.  相似文献   

19.
The passive anisotropic elastic properties of rat's aorta were studied in vitro by subjecting cylindrical segments of thoracic and abdominal aorta to a wide range of deformations. Using data on pressure, axial stretch, outer diameter, axial force and wall thickness, incremental moduli of elasticity in the circumferential, axial and radial directions were computed. Results indicate that while the elastic behavior of the aortic wall is globally anisotropic, there exists a state of deformation at which the vessel displays incremental isotropy. This state of deformation corresponds approximately to the loading conditions to which the aorta is exposed in situ. Values of the moduli, analyzed as a function of transmural pressure, show that the stiffness of the aortic wall is fairly constant at low pressures but raises steeply for pressures higher than physiological. For axial stretches as occurring in situ, the magnitudes of the circumferential and radial moduli do not differ significantly for the thoracic aorta; hence this vessel can be regarded as transversely isotropic over a wide range of pressures. The same observation is valid also for the abdominal aorta when pressures equal or smaller than physiological are considered. For both the thoracic and abdominal segments of the aorta, the circumferential and radial moduli are smaller than the axial modulus at low pressures, while the reverse is true for large pressures.  相似文献   

20.
Postsurgical changes of the opening angle of canine autogenous vein graft.   总被引:2,自引:0,他引:2  
The opening angles of 30 canine autogenous vein grafts were measured to determine the postsurgical change of residual strain in the vein graft. Canine femoral veins were grafted to femoral arteries in the end-to-end anastomosis fashion. When harvested, the vein grafts were cut into short segments and the segments were cut open radially. The opened-up configurations were taken as the zero-stress states of the vessels. Opening angle, defined as the angle between the two lines from the middle point to the tips of the inner wall, was used to describe the zero-stress states. Results show that the opening angles (mean +/- SD) are 63.0 +/- 30.6 deg for normal femoral veins, and -0.4 +/- 4.6, 6.1 +/- 19.4, 25.4 +/- 20.1, and 47.8 +/- 11.4 deg for vein grafts at 1 day, 1 week, 4 and 12 weeks postsurgery, respectively. The postsurgical changes in opening angle reveal nonuniform transmural tissue remodeling in the vascular wall. The relations between the changes in opening angle and the changes in the morphology of the vein grafts are discussed. Intimal hyperplasia is correlated to the opening angle and is suggested to be the main factor for the postsurgical increase in opening angle. The longitudinal strain in the vein graft is found to decrease postsurgically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号