首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V(IV) and V(III) reduce molecular oxygen with increasing rates as the pH is raised from 6.0 to 7.4. Under all conditions tested, V(IV) is the more efficient reductant. EDTA and ATP generally inhibit the reduction of oxygen by V(III) and V(IV). In contrast, desferrioxamine accelerates the reduction of oxygen by V(IV) but with decreasing effectiveness at pH 7.4 compared to pH 6.0, while desferrioxamine accelerates the reduction of oxygen by V(III) only at pH 6.0. Histidine enhances the reduction of oxygen by V(IV) at pH 7.0 and 7.4. The observed rates of oxygen reduction by V(III) and V(IV) imply that the intracellular distribution of vanadium among its redox states reflects not an equilibrium but a steady state.  相似文献   

2.
Ligands, especially desferrioxamine, affect the rate at which vanadium reduces or oxidizes cytochrome c. Whether reduction or oxidation occurs, and how fast, depends on the nature of the ligand, the state of reduction of the vanadium, the pH (6.0, 7.0, or 7.4), and the availability of oxygen. In general, oxidation of ferrocytochrome c was favored by (1) low pH, (2) an oxidized state of the vanadium, (3) the presence of oxygen, and (4) more strongly binding ligands (desferrioxamine much greater than histidine = ATP greater than EDTA greater than albumin greater than aquo). Thus, at pH 6.0, desferrioxamine accelerated the V(V)-catalyzed ferrocytochrome c oxidation 160-fold aerobically, and 3500-fold anaerobically. In general, strongly binding ligands slowed oxidations, especially at higher pH. Desferrioxamine was unique among the five ligands in that it not only accelerated oxidation of ferrocytochrome c at pH 6.0, but at pH 7.4 the redox balance shifted to the point where it paradoxically reduced ferricytochrome c. V(V) is an improbable electron donor, but desferrioxamine will reduce cytochrome c, and V(V) accelerates this process. Oxidation of cytochrome c by V(V):desferrioxamine was faster anaerobically, and reduction by V(IV):desferrioxamine was faster aerobically. Although V(V) did not oxidize ferrocytochrome c at pH 7.4, V(IV) did, provided oxygen and desferrioxamine were both present. V(IV):desferrioxamine almost completely reduced ferricytochrome c, and this reduction was followed by a slow, progressive oxidation. This latter oxidation of cytochrome c is mediated by active species generated in the reaction between V(IV):desferrioxamine and oxygen, because none of these reagents alone can induce oxidation at a comparable rate. The mediating species were transient, and generated in reactions with oxygen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Vanadium (III,IV,V)-dipicolinate complexes with different redox properties were selected to investigate the structure-property relationship of insulin-mimetic vanadium complexes for membrane permeability and gastrointestinal (GI) stress-related toxicity using the Caco-2 cell monolayer model. The cytotoxicity of the vanadium complexes was assayed with 3-(4,5-dimethylthiazoyl-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assays and the effect on monolayer integrity was measured by the trans-epithelial electric resistance (TEER). The three vanadium complexes exhibited intermediate membrane permeability (P(app) = 1.4-3.6x10(-6) cm/s) with low cellular accumulation level (<1%). The permeability of all compounds was independent of the concentration of vanadium complexes and excess picolinate ligands. Both V(III) and V(V)-dipicolinate complexes induced 3-4-fold greater reactive oxygen and nitrogen species (RONS) production than the V(IV)-dipicolinate complex; while the vanadium (III)-dipicolinate was 3-fold less damaging to tight junction of the Caco-2 cell monolayer. Despite the differences in apparent permeability, cellular accumulation, and capacity to induce reactive oxygen and nitrogen species (RONS) levels, the three vanadium complexes exhibited similar cytotoxicity (IC50 = 1.7-1.9 mM). An ion pair reagent, tetrabutylammonium, increased the membrane apparent permeability by 4-fold for vanadium (III and IV)-dipicolinate complexes and 16-fold for vanadium (V)-dipicolinate as measured by decrease in TEER values. In addition, the ion pair reagent prevented damage to monolayer integrity. The three vanadium (III,IV,V)-dipicolinate complexes may pass through caco-2 monolayer via a passive diffusion mechanism. Our results suggest that formation of ion pairs may influence compound permeation and significantly reduce the required dose, and hence the GI toxicity of vanadium-dipicolinate complexes.  相似文献   

4.
The reaction of VCl(3) with 1,10-phenanthroline and a series of dipeptides (H(2)dip), having aliphatic as well as aromatic side chains, in methyl alcohol and in the presence of triethylamine affords vanadium(III) compounds of the general formula [V(III)(dip)(MeOH)(phen)]Cl. Aerial oxidation/hydrolysis of the vanadium(III) species gives their oxovanadium(IV) analogues of the general formula [V(IV)O(dip)(phen)]. X-ray crystallographic characterization of the [V(IV)O(dip)(phen)] compounds (where dip(2-)=Gly- L-Ala, Gly- L-Val and Gly- L-Phe) revealed that the vanadium atom possesses a severely distorted octahedral coordination and is ligated to a tridentate dip(2-) ligand at the N(amine) atom, the deprotonated N(peptide) atom and one of the O(carboxylate) atoms, as well as an oxo group and two phenanthroline nitrogen atoms. Circular dichroism characterization of the V(III)/V(IV)O(2+)-dipeptide compounds revealed a strong signal for the V(IV)O(2+) species in the visible range of the spectrum, with a characteristic pattern which may be exploited to identify the N(am), N(pep) and O(car) ligation of a peptide or a protein to V(IV)O(2+) center, and a weak Cotton effect of opposite sign to their vanadium(III) analogues. The visible spectra of the V(III)-dipeptide compounds revealed two d-d bands with high intensity, thus indicating that the covalency of the metal-donor atoms is significant, i.e. the vanadium d orbitals are significantly mixed with the ligand orbitals, and this is confirmed by the low values of their Racah B parameters. The high-intensity band of the V(IV)O(2+)-dipeptide compounds at approximately 460 nm implies also a strong covalency of the metal with the equatorial donor atoms and this was supported by the EPR spectra of these compounds. Moreover, the V(III)/V(IV)O(2+)-dipeptide complexes were characterized by EPR and IR spectroscopies as well as conductivity and magnetic susceptibility measurements.  相似文献   

5.
Biotechnological leaching has been proposed as a suitable method for extraction of vanadium from spent catalysts and oil ash. In the biological leaching process, the vanadium(V) can be reduced to vanadium(IV), which is a less toxic and more soluble form of the vanadium. The present investigation showed that Acidithiobacillus ferrooxidans efficiently reduced vanadium(V) in the form of vanadium pentaoxide, to vanadyl(IV) ions, and tolerated high concentrations of vanadium(IV) and vanadium(V). A. ferrooxidans was compared with Acidithiobacillus thiooxidans, which has previously been utilized for vanadium leaching and reduction. Vanadium pentaoxide and sodium vanadate were used as model compounds. The results of this study indicate possibilities to develop an economical and technically feasible process for biotechnological vanadium recovery.  相似文献   

6.
X L Shi  X Y Sun  N S Dalal 《FEBS letters》1990,271(1-2):185-188
The in vivo toxicity of vanadium(V) has been found to correlate with the depletion of cellular glutathione and related non-protein thiols. With a view to understanding the mechanism for this observation, we have investigated the oxidation of glutathione, cysteine N-acetylcysteine and penicillamine by vanadium(V), using electron spin resonance (ESR) and ESR spin trapping methodology. The spin trap used was 5,5-dimethyl-1-pyrroline 1-oxide (DMPO). It is found that the oxidation of these thiols by vanadium(V) generates the corresponding thiyl radicals and vanadium- (IV) complexes. The results suggest that free radical reactions play a significant role in the depletion of cellular thiols by vanadium(V) and hence in vanadium(V) toxicity.  相似文献   

7.
Vanadium plays an important role in biological systems and exhibits a variety of bioactivities. In an effort to uncover the chemistry and biochemistry of vanadium with nitrogen- and oxygen-containing ligands, we report herein the synthesis and spectroscopic characterization of vanadium(IV) complexes with hydrazide ligands. Substituents on these ligands exhibit systematic variations of electronic and steric factors. Elemental and spectral data indicate the presence of a dimeric unit with two vanadium(IV) ions coordinated with two hydrazide ligands along with two H(2)O molecules. The stability studies of these complexes over time in coordinating solvent, DMSO, indicates binding of the solvent molecules to give [V2O2L2(H2O)2(DMSO)2]2+ (L=hydrazide ligand) and then conversion of it to a monomeric intermediate species, [VOL(DMSO)3]1+. Hydrazide ligands are inactive against urease, whereas vanadium(IV) complexes of these ligands show significant inhibitory potential against this enzyme and are found to be non-competitive inhibitors. These complexes also show low phytotoxicity indicating their usefulness for soil ureases. Structure-activity relationship studies indicate that the steric and/or electronic effects that may change the geometry of the complexes play an important role in their inhibitory potential and phytotoxicity.  相似文献   

8.
The synthesis, spectroscopic, enzyme-inhibition, and free-radical-scavenging properties of a series of vanadium(IV) complexes, compounds 1-10, were investigated. These complexes exhibit a dimeric structure with hydrazide ligands coordinated in a bidentate fashion. All complexes are stable in the solid state, but exhibit varying degrees of stability in solution. In coordinating solvent such as DMSO, stepwise binding of two solvent molecules at the 6th positions trans to the V double bond O bond of the dimeric unit is observed. The dimeric compounds are converted to monomeric species in which both solvent molecules and the hydrazide ligands are coordinated to the V(IV) center. The free hydrazide ligands 11-20 were inactive against alpha-glucosidase, but the V(IV) complexes showed varying degrees of inhibition, depending on the type of ligand. The DPPH-radical-scavenging activities of 1-20 were determined, which indicated that steric and/or electronic effects responsible for changes in geometry play important roles in terms of antioxidant potential.  相似文献   

9.
《Inorganica chimica acta》2006,359(4):1314-1320
Two mixed ligand vanadium(III) complexes bis(acetylacetonato)(phenanthroline)vanadium(III) fluoroborate (1) and bis(acetylacetonato)(phenanthroline)vanadium(III) perchorate (2) have been prepared and characterized by UV–Vis, IR, 1H NMR spectroscopic techniques and single crystal X-ray diffraction. The electronic spectra are as expected for V(III) in an octahedral environment. The 1H NMR spectra are typical of paramagnetic V(III) species. The complexes have crystallized with dichloromethane solvate and are isomorphous. The coordination sphere is composed of vanadium in a distorted octahedral environment, ligated to two bidentate chelating acetylacetonate ligands through the oxygen atoms and two phenanthroline nitrogens.  相似文献   

10.
Spectroscopic, enzyme-inhibition, and free-radical scavenging properties of a series of hydrazide ligands and their vanadium(IV) complexes have been investigated. Analytical and spectral data indicate the presence of a dimeric unit with two oxovanadium(IV) ions (VO2+) coordinated with two hydrazide ligands along with two water molecules. All complexes are stable in the solid state, but exhibit varying degrees of stability in solution. Binding of the coordinating solvent such as DMSO is indicated at the 6th position of vanadium in the dimeric unit followed by conversion to a monomeric intermediate species, [VOL(DMSO)3]1+ (L = hydrazide ligand). The free hydrazide ligands are inactive against snake venom phosphodiesterase I (SVPD), whereas oxovanadium(IV) complexes of these ligands show varying degrees of inhibition and are found to be non-competitive inhibitors. The superoxide and nitric oxide radical scavenging properties have been determined. Hydrazide ligands are inactive against these free radicals, whereas their V(IV) complexes show varying degrees of inhibition. Structure–activity relationship studies indicate that the electronic and/or steric factors that change the geometry of the complexes play an important role in their inhibitory potential against SVPD and free radicals.  相似文献   

11.
ESR spectroscopic evidence is presented for the formation of vanadium(IV) in the reduction of vanadium(V) by three typical, NADPH-dependent, flavoenzymes: glutathione reductase, lipoyl dehydrogenase, and ferredoxin-NADP+ oxidoreductase. The vanadium(V)-reduction mechanism appears to be an enzymatic one-electron reduction process. Addition of superoxide dismutase (SOD) showed that the generation of vanadium(IV) does not involve the superoxide (O2-) radical significantly. Measurements under anaerobic atmosphere showed, however, that the enzymes-vanadium-NADPH mixture can cause the reduction of molecular oxygen to generate H2O2. The H2O2 and vanadium(IV) thus formed react to generate hydroxyl (.OH) radical. The .OH formation is inhibited strongly by catalase and to a lesser degree by SOD, but it is enhanced by exogenous H2O2, suggesting the occurrence of a Fenton-like reaction. The inhibition of vanadium(IV) formation by N-ethylmaleimide indicates that the SH group on the flavoenzyme's cystine residue plays an important role in the enzyme's vanadium(V) reductase function. These results thus reveal a new property of the above-mentioned, NADPH-dependent flavoenzymes--their function as vanadium(V) reductases, as well as that as generators of .OH radical in the vanadium(V) reduction mechanism.  相似文献   

12.
The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)(4) [Pu(IV)(OH)(4(am))] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)(4(am)) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species.  相似文献   

13.
【目的】重金属钒的环境危害日益受到关注,微生物可实现高毒性的五价钒[pentavalent vanadium, V(Ⅴ)]的还原固定,其中电子供体是微生物还原V(Ⅴ)的关键,尽管天然Fe(Ⅱ)矿物和天然生物质均被报道可单独支持微生物还原V(Ⅴ),而基于两者构建的混养体系中微生物还原V(Ⅴ)的特征尚未揭示。【方法】本研究对天然Fe(Ⅱ)矿物和生物质进行优选并复配组合,探究混养生物体系中五价钒[V(Ⅴ)]的还原机理。【结果】磁黄铁矿和木屑对V(Ⅴ)的去除效率最高,分别为54.2%±3.4%和67.1%±3.1%。当优选的磁黄铁矿与木屑组合复配比例为1:3时可达到最高的V(Ⅴ)去除效率82.7%±3.1%。V(Ⅴ)被还原为不溶性V(Ⅳ)沉淀,Fe(Ⅱ)和S(–Ⅱ)分别被氧化为Fe(Ⅲ)和SO42-。在混养体系中,脱硫菌(Desulfurivibrio)和硫菌属(Thiobacillus)等自养菌属可能参与磁黄铁矿的氧化与V(Ⅴ)还原,并利用无机碳源合成有机中间代谢产物,与无胆甾原体属(Acholeplasma)等纤维素降解菌分解木屑的产物一起,被B...  相似文献   

14.
The concentration of vanadium in organs of diabetic rats that had been fed vanadium, either as V(IV) or V(V), in their drinking water has been determined. The kidney was found to have the highest concentration, about 185 nmol/g wet tissue. This averages about three times higher than for the liver or spleen, for which concentrations were comparable. The lung, blood plasma, and blood cells tended to have the lowest accumulations of vanadium. A time-course study indicated that the half-life for elimination of vanadium from the bodies of vanadium-fed rats is about 12 d.  相似文献   

15.
The chemistry of vanadium compounds that can be taken orally is very timely since a vanadium(IV) compound, KP-102, is currently in clinical trials in humans, and the fact that human studies with inorganic salts have recently been reported. VO(acac)2 and VO(Et-acac)2 (where acac is acetylacetonato and Et-acac is 3-ethyl-2,4-pentanedionato) have long-term in vivo insulin mimetic effects in streptozotocin induced diabetic Wistar rats. Structural characterization of VO(acac)2 and two derivatives, VO(Me-acac)2 and VO(Et-acac)2, in the solid state and solution have begun to delineate the size limits of the insulin-like active species. Oral ammonium dipicolinatooxovanadium(V) is a clinically useful hypoglycemic agent in cats with naturally occurring diabetes mellitus. This compound is particularly interesting since it represents the first time that a well-characterized organic vanadium compound with the vanadium in oxidation state five has been found to be an orally effective hypoglycemic agent in animals.  相似文献   

16.
A representative set of vanadium(IV and V) compounds in varying coordination environments has been tested in the concentration range 1 to 10(-6) mM, using transformed mice fibroblasts (cell line SV 3T3), with respect to their short-term cell toxicity (up to 36 hours) and their ability to stimulate glucose uptake by cells. These insulin-mimetic tests have also been carried out with non-transformed human fibroblasts (cell line F26). The compounds under investigation comprise established insulin-mimetic species such as vanadate ([H(2)VO(4)](-)), [VO(acetylacetonate)(2)], [VO(2)(dipicolinate)](-) and [VO(maltolate)(2)], and new systems and coordination compounds containing OO, ON, OS, NS and ONS donor atom sets. A vitality test assay, measuring the reduction equivalents released in the mitochondrial respiratory chain by intracellular glucose degradation, is introduced and the results are counter-checked with (3)H-labelled glucose. Most compounds are toxic at the 1 mM concentration level, and most compounds are essentially non-toxic and about as effective as or more potent than insulin at concentrations of 0.01 mM and below. V(V) compounds tend to be less toxic than V(IV)compounds, and complexes containing thio functional ligands are somewhat more toxic than others. Generally, ON ligation is superior in insulin-mimetic efficacy to OO or O/ NS coordination, irrespective of the vanadium oxidation state. There is, however, no striking correlation between the nature of the ligand systems and the insulin-mimetic potency in these cell culture tests, encompassing 41 vanadium compounds, the results on 22 of which are reported in detail here. The syntheses and characteristics of various new compounds are provided together with selected speciation results. The crystal and molecular structures of [[VO(naph-tris)](2)] [where naph-tris is the Schiff base formed between o-hydroxynaphthaldehyde and tris(hydroxymethyl)amine] are reported. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0311-5.  相似文献   

17.
A kinetic method based on alkaline phosphatase has been developed to measure free trace levels of vanadium(IV) and (V). The method involves measuring the rate of the alkaline phosphatase-catalyzed hydrolysis of p-nitrophenyl phosphate with (Vi) and without (Vo) a competitive inhibitor in the assay. Michaelis-Menten kinetics for a competitive inhibitor was used to express the relationship between Vo/Vi and the inhibitor concentration. Measuring both Vo and Vi thus yields a Vo/Vi ratio that allows calculation of the competitive inhibitor concentration. Determination of free vanadium in complex fluids can be accomplished by comparing the ratio of rates of p-nitrophenyl phosphate hydrolysis with and without a sequestering agent to the ratios of rates measured on addition of a known vanadium concentration. Free vanadium(V) can conveniently be measured from 10(-7) to 10(-5) M and free vanadium(IV) can be measured at 10(-8) M and above. The error limits on the vanadium determinations range from +/- 3 to +/- 12% of the concentration under investigation depending on the conditions under which the assay was conducted.  相似文献   

18.
The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)4 [Pu(IV)(OH)4(am)] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)4(am) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species.  相似文献   

19.
S Kume  T Ueki  H Matsuoka  M Hamada  N Satoh  H Michibata 《Biometals》2012,25(5):1037-1050
Ascidians are hyperaccumulators that have been studied in detail. Proteins and genes involved in the accumulation process have been identified, but regulation of gene expression related to vanadium accumulation remains unknown. To gain insights into the regulation of gene expression by vanadium in a genome-wide manner, we performed a comprehensive study on the effect of excess vanadium ions on a vanadium-rich ascidian, Ciona intestinalis, using a microarray. RT-PCR and enzyme activity assay were performed from the perspective of redox and accumulation of metal ions in each tissue. Glutathione metabolism-related proteins were significantly up-regulated by V(IV) treatment. Several genes involved in the transport of vanadium and protons, such as Nramp and V-ATPase, were significantly up-regulated by V(IV) treatment. We observed significant up-regulation of glutathione synthesis and degradation pathways in the intestine and branchial sac. In blood cells, expression of Ci-Vanabin4, glutathione reductase activity, glutathione levels, and vanadium concentration increased after V(IV) treatment. V(IV) treatment induced significant changes related to vanadium exclusion, seclusion, and redox pathways in the intestine and branchial sac. It also induced an enhancement of the vanadium reduction and accumulation cascade in blood cells. These differential responses in each tissue in the presence of excess vanadium ions suggest that vanadium accumulation and reduction may have regulatory functions. This is the first report on the gene regulation by the treatment of vanadium-rich ascidians with excess vanadium ions. It provided much information for the mechanism of regulation of gene expression related to vanadium accumulation.  相似文献   

20.
Evaluation of stability of vanadium(IV) and (V) complexes under similar conditions is critical for the interpretation and assessment of bioactivity of various vanadium species. Detailed understanding of the chemical properties of these complexes is necessary to explain differences observed their activity in biological systems. These studies are carried out to link the chemistry of both vanadium(IV) and (V) complexes of two ligands, 2,6-pyridinedicarboxylic acid (dipicolinic acid, H(2)dipic) and 4-hydroxy-2,6-pyridinedicarboxylic acid (H(2)dipic-OH). Solution speciation of the two 2,6-pyridinedicarboxylic acids with vanadium(IV) and vanadium(V) ions was determined by pH-potentiometry at I=0.2 M (KCl) ionic strength and at T=298 K. The stability and the metal affinities of the ligands were compared. Vanadium(V) complexes were found to form only tridentate coordinated 1:1 complexes, while vanadium(IV) formed complexes with both 1:1 and 1:2 stoichiometries. The formation constant reflects hindered coordination of a second ligand molecule, presumably because of the relatively small size of the metal ion. The most probable binding mode of the complexes was further explored using ambient and low temperature EPR spectroscopy for vanadium(IV) and 51V NMR spectroscopy for vanadium(V) systems. Upon complex formation the pyridinol-OH in position 4 deprotonates with pK approximately 3.7-4.1, which is approximately 6 orders of magnitude lower than that of the free ligand. The deprotonation enhances the ligand metal ion affinity compared to the parent ligand dipicolinic acid. In the light of the speciation and stability data of the metal complexes, the efficiency of the two ligands in transporting the metal ion in the two different oxidation states are assessed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号