首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Xue H  Zhou L  Yuan P  Wang Z  Ni J  Yao T  Wang J  Huang Y  Yu C  Lu L 《Regulatory peptides》2012,177(1-3):12-20
In the updated concept of renin-angiotensin system (RAS), it contains the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angtiogensin type 1 receptor (AT1) axis and the angiotensin-converting enzyme-related carboxypeptidase (ACE2)-Ang-(1-7)-Mas axis. The former axis has been well demonstrated performing the vasoconstrictive, proliferative and pro-inflammatory functions by activation of AT1 receptors, while the later new identified axis is considered counterbalancing the effects of the former. The present study is aimed at observing the interaction between Ang-(1-7) and Ang II on cultured rat renal mesangial cells (MCs). RT-PCR, Western blot and immunofluorescent staining and confocal microscopy results showed that both AT1 and Mas receptor were co-distributed in rat renal MCs. Ang-(1-7) showed similar effects on Ang II in cultured MCs that stimulated phosphorylated extracellular signal-regulated kinase (ERK)1/2 phosphorylation and transforms growth factor-β1 synthesis, and cell proliferation and extracellular matrix synthesis. Co-treatment of the cell with Ang-(1-7) and Ang II, Ang-(1-7) counteracted AngII-induced effects in a concentration dependent manner, but failed to alter the changes induced by endothelin-1. The stimulating effect of Ang II was mediated by AT1 receptor while all the effects of Ang-(1-7) were blocked by Mas receptor antagonist A-779, but not by AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319. These results suggest that Ang-(1-7) and Ang II specifically interact with each other on rat renal MCs via activation of their specific receptors, Mas and AT1 receptor respectively.  相似文献   

2.
3.
Recently, we demonstrated that the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubules is reversed, in a dose-dependent manner, by Ang-(1-7) [Biochim. Biophys. Acta 1467 (2000) 189]. In the present paper, we characterized the receptor involved in this phenomenon. The preincubation of the Na(+)-ATPase with 10(-8) M Ang II increases the enzyme activity from 7.50+/-0.02 (control) to 12.40+/-1.50 nmol Pi mg(-1) min(-1) (p<0.05). Addition of 10(-9) M Ang-(1-7) completely reverts this effect returning the ATPase activity to the control level. This effect seems to be specific to Ang-(1-7) since Ang III (10(-12)-10(-8) M) does not modify the stimulation of the renal proximal tubule Na(+)-ATPase activity by Ang II. Saralasin abolishes the Ang-(1-7) effect in a dose-dependent manner being the maximal effect obtained at 10(-11) M. The increase in A779 concentration (from 10(-12) to 10(-7) M), a specific Ang-(1-7) antagonist, also abolishes the Ang-(1-7) effect. On the other hand, PD123319 (10(-8)-10(-6) M), an AT(2) antagonist receptor, and losartan (10(-12)-10(-7) M), an AT(1) antagonist receptor, does not modify the effect of Ang-(1-7). Taken together, these data indicate that Ang-(1-7) reverts the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubule through a A779-sensitive receptor.  相似文献   

4.
Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1-7). Parasite infection decreased Ang-(1-7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1-7) decreased the level of infection in an A779 (specific antagonist of Ang-(1-7) receptor, MAS)-sensitive manner. 10(-7) M PD123319, an AT(2) receptor antagonist, partially reversed the effects of Ang-(1-7) and Ang II. However, 10(-6) M losartan, an antagonist of the AT(1) receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10(-8) M Ang II or 10(-8) M Ang-(1-7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10(-7) M A779. 10(-6) M dibutyryl-cAMP increased the level of infection and 10(-7) M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1-7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1-7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus.  相似文献   

5.
Since it has been suggested that angiotensin (Ang) (1-7) functions as an antihypertensive peptide, we studied its effect on the Ang II-enhanced norepinephrine (NE) release evoked by K+ in hypothalami isolated from aortic coarcted hypertensive (CH) rats. The endogenous NE stores were labeled by incubation of the tissues with 3H-NE during 30 min, and after 90 min of washing, they were incubated in Krebs solution containing 25 mM KCl in the absence or presence of the peptides. Ang-(1-7) not only diminished the K+-evoked NE release from hypothalami of CH rats, but also blocked the Ang II-enhanced NE release induced by K+. Ang-(1-7) blocking action on the Ang II response was prevented by [D-Ala7]Ang-(1-7), an Ang-(1-7) specific antagonist, by PD 123319, an AT2-receptor antagonist, and by Hoe 140, a B2 receptor antagonist. Ang-(1-7) inhibitory effect on the Ang II facilitatory effect on K+-stimulated NE release disappeared in the presence of Nomega-nitro-L-arginine methylester and was restored by L-arginine. Our present results suggest that Ang-(1-7) may contribute to blood pressure regulation by blocking Ang II actions on NE release at the central level. This inhibitory effect is a nitric oxide-mediated mechanism involving AT2 receptors and/or Ang-(1-7) specific receptors and local bradykinin generation.  相似文献   

6.
The objective of the present work was to study the cardiovascular actions of the intrahypothalamic injection of Ang-(1-7) and its effects on the pressor response to Ang II in spontaneously hypertensive (SH) rats and Wistar Kyoto (WKY) animals. In anaesthetized SH and WKY rats, a carotid artery was cannulated for mean arterial pressure (MAP) measurement and a stainless-steel needle was inserted into the anterior hypothalamus for drug administration. The cardiovascular effects of the intrahypothalamic administration of Ang-(1-7) were determined in SH and WKY rats. In SH rats, the effect of irbesartan and D-Ala-Ang-(1-7) on Ang-(1-7) cardiovascular effect was also evaluated. Ang II was administered in the hypothalamus of SH and WKY rats and changes in blood pressure and heart rate were measured followed by the administration of Ang II, Ang II+Ang-(1-7) or Ang II+D-Ala-Ang-(1-7). Ang-(1-7) did not the change basal MAP in WKY rats, but induced a pressor response in SH animals. Whilst the co-administration of D-Ala-Ang-(1-7) did not affect the response to Ang-(1-7), the previous administration of irbesartan prevented the effect of the peptide. The intrahypothalamic injection of Ang II induced a significantly greater pressor response in SH animals compared to normotensive rats. The co-administration of Ang-(1-7) with Ang II did not affect the pressor response to Ang II in the WKY group. In SH rats, whilst the co-administration of Ang-(1-7) with Ang II reduced the pressor response to Ang II, the concomitant application of D-Ala-Ang-(1-7) with Ang II increased the pressor response to the octapeptide after 5 and 10 min of intrahypothalamic administration. In conclusion, our result demonstrated that the biologically active peptide Ang-(1-7) did not participate in the hypothalamic blood pressure regulation of WKY animals. In SH rats, Ang-(1-7) exerted pleiotropic effects on blood pressure regulation. High dose of the heptapeptide produced a pressor response because of an unspecific action by activation of AT1 receptors. The concomitant administration of lower doses of Ang-(1-7) with Ang II reduced the pressor response to the octapeptide. Finally, the effect of AT(1-7) antagonist on Ang II pressor response suggested that hypothalamic formed Ang-(1-7) are implicated in the regulation of the cardiovascular effects of Ang II.  相似文献   

7.
Ang-(1-7) is an effector peptide of the renin-angiotensin system with several distinct actions that are likely mediated by a specific receptor. Regulatory effects of angiotensin (Ang) peptides, Ang-(1-7) and Ang II, on Ang receptor subtype 1 (AT1) mRNA expression were investigated in vascular smooth muscle cells (VSMC) from four University of Akron (Akr) rat strains (WKY, SHR and two backcross consomic lines SHR/y and SHR/a), and in SHR and WKY cells from Charles River Laboratories (Crl). In WKY/Akr and SHR/Akr, Ang-(1-7) treatment increased the levels of AT1 mRNA. This effect was inhibited by the specific Ang-(1-7) antagonist, A-779, in WKY/Akr but not SHR/Akr. Ang II had no effect in Akr cells, but it down-regulated AT1 mRNA in WKY/Crl and SHR/Crl VSMC. Ang-(1-7) did not affect AT1 mRNA levels in Crl lines. In conclusion, Ang-(1-7) regulates the AT1 receptor either directly or indirectly in a strain-specific fashion. The Ang-(1-7) antagonist, A-779, blocks the actions of Ang-(1-7) only in VSMC from WKY/Akr rats, suggesting either that the binding sites for Ang-(1-7) have different properties in SHR/Akr and WKY/Akr cell lines, or that some of the effects of Ang-(1-7) are not receptor mediated. Further, we found differences between Akr cells and Crl cells that are consistent with their genetic heterogeneity.  相似文献   

8.
Significant angiotensin (Ang) (1-7) production occurs in kidney and effects on renal function have been observed. The present study was undertaken to investigate binding characteristics of the heptapeptide to Ang II receptors present in rat renal cortex. [125I]-Ang II binding to rat glomeruli membranes was analyzed in the presence of increasing concentrations of Ang II, Ang-(1-7), DUP 753 and PD 123319. Linearity of the Scatchard plot of the [125I]-Ang II specific binding to rat glomeruli membranes indicated a single population of receptors, with a Kd value of 0.7 +/- 0.1 nM and a Bmax of 198 +/- 0.04 fmol/mg protein. DUP 753, an specific AT1 receptor antagonist, totally displaced the specific binding of [125I]-radiolabelled hormone with a Ki of 15.8 +/- 0.9 nM, while no changes were observed in the presence of the selective AT2 receptor antagonist, PD 123319. The specific [125I]-Ang II binding to rat glomerular membranes was displaced by Ang-(1-7) with high affinity (Ki = 8.0 +/- 3.2 nM). We conclude that radioligand binding assays in the presence of selective Ang II antagonists DUP 753 and PD 123319 suggest the unique presence of AT1, receptors in rat glomeruli and a possible role in the control of the biological renal effects of Ang-(1-7).  相似文献   

9.
Responses to pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide derived from ovine hypothalamus with 68% sequence homology with vasoactive intestinal polypeptide (VIP), were investigated in the pulmonary and hindquarters vascular beds of the anesthetized cat under conditions of controlled blood flow. Injection of the peptide into the perfused lung lobe under elevated tone conditions produced dose-dependent decreases in lobar arterial pressure that were accompanied by biphasic changes in systemic arterial pressure characterized by an initial decrease followed by a secondary increase in pressure. When compared with other vasodilator agents in the pulmonary vascular bed, the relative order of potency was isoproterenol greater than PACAP greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP. In the hindquarters vascular bed, intra-arterial injections of PACAP produced biphasic changes in hindquarters perfusion pressure characterized by initial decreases followed by secondary increases, which were accompanied by biphasic changes in systemic arterial pressure. In terms of relative vasodilator activity in the hindlimb, the order of relative potency was isoproterenol greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP greater than PACAP. PACAP was the only agent that caused a secondary vasoconstrictor response in the hindlimb and produced biphasic changes in systemic arterial pressure. D-Phe2-VIP, a VIP receptor antagonist, blocked the hindquarters vasodilation in response to VIP but had no effect on responses to PACAP. The present investigation shows that PACAP produces pulmonary vasodilation, as well as dilation, and vasoconstriction in the systemic (hindlimb) vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have recently described, in the mouse aorta, the vasodilator effect of angiotensin-(1-7) (Ang-(1-7)) was mediated by activation of the Mas Ang-(1-7) receptor and that A-779 and D-Pro7-Ang-(1-7) act as Mas receptor antagonists. In this work we show pharmacological evidence for the existence of a different Ang-(1-7) receptor subtype mediating the vasodilator effect of Ang-(1-7) in the aorta from Sprague-Dawley (SD) rats. Ang-(1-7) induced an endothelium-dependent vasodilator effect in aortic rings from SD rats which was inhibited by removal of the endothelium and by L-NAME (100 microM) but not by indomethacin (10 microM). The Ang-(1-7) receptor antagonist D-Pro7-Ang-(1-7) (0.1 microM) abolished the vasodilator effect of the peptide. However, the other specific Ang-(1-7) receptor antagonist, A-779 in concentrations up to 10 microM, did not affect vasodilation induced by Ang-(1-7). The Ang II AT1 and AT2 receptors antagonists CV11974 (0.01 microM) and PD123319 (1 microM), respectively, the bradykinin B2 receptor antagonist HOE 140 (1 microM) and the inhibitor of ACE captopril (10 microM) did not change the effect of Ang-(1-7). Our results show that in the aorta of SD rats, the vasodilator effect of Ang-(1-7) is dependent on endothelium-derived nitric oxide. This effect is mediated by the activation of Ang-(1-7) receptors sensitive to D-Pro7-Ang-(1-7), but not to A-779, which suggests the existence of a different Ang-(1-7) receptor subtype.  相似文献   

11.
Experiments were performed on isolated salt-perfused rat lungs to determine the receptor type(s) responsible for the pulmonary vascular effects of the neurohypophyseal peptides arginine vasopressin (AVP) and oxytocin. Bolus administration of AVP to lungs preconstricted with the thromboxane mimetic U-46619 resulted in a dose-dependent vasodilatory response (approximately 65% reversal of U-46619-induced vasoconstriction at the highest dose tested) that was blocked by pretreatment with a selective V1- but not by a selective V2-vasopressinergic receptor antagonist. Administration of a selective V1-agonist to the preconstricted pulmonary vasculature resulted in a vasodilatory response similar to that observed with AVP (approximately 55% reversal of U-46619 vasoconstriction), which was blocked by prior administration of the selective V1-receptor antagonist. Administration of the selective V2-receptor agonist desmopressin to the preconstricted pulmonary vasculature resulted in a small (approximately 8% reversal of U-46619 vasoconstriction) vasodilatory response that was, nevertheless, greater than that produced by addition of vehicle alone and was attenuated by pretreatment with a selective V2-receptor antagonist. Finally, oxytocin also caused vasodilation in the preconstricted pulmonary vasculature; however, the potency of oxytocin was approximately 1% of AVP, and the vasodilation produced by oxytocin was blocked by prior administration of a selective V1-receptor antagonist, suggesting that oxytocin acts via V1-vasopressinergic receptor stimulation. We conclude from these experiments that AVP and oxytocin dilate the preconstricted pulmonary vasculature primarily via stimulation of V1-vasopressinergic receptors. V2-receptor stimulation results in a minor vasodilatory response, although its physiological significance is unclear.  相似文献   

12.
The present experiment was designed to investigate the possible involvement of glutamate and taurine in the depressor response produced by angiotensin (Ang)-(1-7) at the caudal ventrolateral medulla (CVLM) in rats anesthetized with urethane and alpha-chloralose. Microinjection of Ang-(1-7) into the CVLM elicited a depressor response which was partially blocked by nonselective glutamate receptors antagonist kynurenic acid, whereas selective Ang-(1-7) antagonist Ang779 produced a pressor response which was significantly attenuated by taurine receptors antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide. Release of glutamate and taurine in the CVLM was evaluated with microdialysis, and the contents of these amino acids were measured with high performance liquid chromatography-fluorescent detection. The depressor response to Ang-(1-7) was accompanied by an increased release of glutamate and a decrease of taurine at the CVLM, whereas the pressor response to Ang779 was associated with a decreased release of glutamate and an increase of taurine. These results suggest that Ang-(1-7) and its antagonist Ang779 modulate the release of glutamate and taurine at the CVLM, which in turn contributes at least in part to the blood pressure response to Ang-(1-7) and Ang779.  相似文献   

13.
We tested the hypothesis that the actions of Angiotensin (Ang)-(1-7) in the heart could involve changes in tissue levels of Ang II. This possibility was addressed by determining the effect of chronic infusion of Ang-(1-7) on plasma and tissue angiotensins. Ang-(1-7) was infused subcutaneously (osmotic minipumps) in Wistar rats. Angiotensins were determined by radioimmunoassay (RIA) in plasma, heart, and kidney. Tissue and plasma angiotensin-converting enzyme (ACE) activity and plasma renin activity (PRA) were also measured. Cardiac and renal ACE2 mRNA levels and cardiac angiotensinogen mRNA levels were assessed by semi-quantitative polymerase chain reaction (PCR). AT1 receptor number was evaluated by autoradiograph. Chronic infusion of Ang-(1-7) (2 microg/h, 6 days) produced a marked decrease of Ang II levels in the heart. A less pronounced but significant decrease of Ang-(1-7) was also observed. No significant changes were observed for Ang I. Ang II was not altered in the kidney. In this tissue, a significant increase of Ang-(1-7) and Ang I concentration was observed. A significant increase of plasma Ang-(1-7) and Ang II was also observed. Ang-(1-7) infusion did not change ACE activity or PRA. A selective slight significant increase in ACE2 expression in the heart was observed. Heart angiotensinogen mRNA as well as the number of Ang II binding sites did not change. These results suggest that AT1 receptors-independent changes in heart Ang II concentration might contribute for the beneficial effects of Ang-(1-7) in the heart. Moreover, these results reinforce the hypothesis that this angiotensin plays an important site-specific role within the renin-angiotensin system.  相似文献   

14.
Ang-(3-7) is a fragment of the renin-angiotensin system that can be derived both from Ang II or Ang-(1-7). In the present study we determined the cardiovascular effects produced by angiotensin-(3-7) [Ang-(3-7)] microinjection into the rostral ventrolateral medulla (RVLM), a key region for the control of sympathetic drive to the periphery. RVLM microinjection of Ang-(3-7) (20, 40 or 80 ng) in male Wistar rats anesthetized with urethane produced significant increases in MAP (19+/-3.8 mm Hg, n=5; 16+/-1.6 mm Hg, n=15 and 11+/-1.2 mm Hg, n=4, respectively) as compared to saline (4+/-0.7 mm Hg, n=6). These alterations were similar to that induced by Ang-(1-7) (14+/-1.3 mm Hg, 40 ng; n=12) and Ang II (17+/-2.3 mm Hg, 40 ng; n=7). Microinjection of losartan (AT(1) receptor antagonist, 100 pmol) or A779 (selective Mas receptor antagonist, 100 pmol) did not alter the pressor effect caused by Ang-(3-7). Microinjection of an Ang-(3-7) analogue, d-Ala(7)-Ang-(3-7) (100 pmol), completely abolished the pressor effect caused by Ang-(3-7). These results suggest that Ang-(3-7) may be an additional peptide of the RAS to act as neuromodulator, at least at the RVLM. Further, the Ang-(3-7) pressor effect is not mediated by the interaction with AT(1) or the Ang-(1-7), Mas, receptors.  相似文献   

15.

Background

The enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT1 receptors by angiotension (Ang) II in the paraventricular nucleus (PVN) augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7) in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7) and Ang II on CSAR in renovascular hypertension.

Methodology/Principal Findings

The two-kidney, one-clip (2K1C) method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7) in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham) rats. Mas receptor antagonist A-779 and AT1 receptor antagonist losartan induced opposite effects to Ang-(1-7) or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7). PVN pretreatment with Ang-(1-7) dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7) level did not.

Conclusions

Ang-(1-7) in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7) and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7) in PVN potentiates the effects of Ang II in renovascular hypertension.  相似文献   

16.
The effect of angiotensin-(1-7) on jejunal water absorption in rats was investigated. The jejunal sac of anesthetized rats was filled with two ml of tyrode solution containing 3.7 MBq of tritiated water. A femoral vein was cannulated for administration of peptides and drugs. Infusion of Ang-(1-7) at the dose of 0.7 ng/kg.min produced a significant increase in jejunal water absorption compared to control (32% increase). The Ang-(1-7) antagonist A-779 abolished the effect of Ang-(1-7) on water absorption. A reduction of the Ang-(1-7) effect was also produced by treatment with the AT(1) receptor antagonist, losartan or the AT(2) receptor antagonist, PD123.177. The increase in jejunal water absorption produced by Ang-(1-7) was blocked by the nitric oxide synthase inhibitor, L-NAME and by indomethacin. These data suggest that the effect of Ang-(1-7) on the jejunal loop is mediated by activation of a multiple angiotensin receptors and/or by an atypical angiotensin receptor. Furthermore, the effect of Ang-(1-7) on jejunal water absorption is mediated by nitric oxide and by a cyclooxygenase-dependent mechanism.  相似文献   

17.
Hafizi S  Chester AH  Yacoub MH 《Peptides》2004,25(6):1031-1033
The vasoactive peptide angiotensin II (Ang II) has been implicated as a mediator of myocardial fibrosis. We carried out a comparative investigation of the effects of Ang II and its precursor Ang I on collagen metabolism and proliferation in cultured human cardiac fibroblasts. Cardiac fibroblasts responded to both Ang I and Ang II with concentration-dependent increases in collagen synthesis but no proliferation. The stimulatory effect of Ang II was abolished by the AT(1) receptor antagonist losartan but not the AT(2) receptor antagonist PD123319. The response to Ang I was not affected by either antagonist, nor by the angiotensin-converting enzyme (ACE) inhibitor captopril. In conclusion, Both Ang I and Ang II stimulate collagen synthesis of human cardiac fibroblasts, the effect of Ang II occurring via the AT(1) receptor whilst Ang I appears to exert a direct effect through non-Ang II-dependent mechanisms. These results suggest distinct roles for angiotensin peptides in the development of cardiac fibrosis.  相似文献   

18.
It has been clearly established that mitogen-activated protein kinases (MAPKS) are important mediators of angiotensin II (Ang II) signaling via AT1 receptors in the vasculature. However, evidence for a role of these kinases in changes of Ang II-induced vasoconstriction in obesity is still lacking. Here we sought to determine whether vascular MAPKs are differentially activated by Ang II in obese animals. The role of AT2 receptors was also evaluated. Male monosodium glutamate-induced obese (obese) and non-obese Wistar rats (control) were used. The circulating concentrations of Ang I and Ang II, determined by HPLC, were increased in obese rats. Ang II-induced isometric contraction was decreased in endothelium-intact resistance mesenteric arteries from obese compared with control rats and exhibited a retarded AT1 receptor antagonist response. Blocking of AT2 receptors and inhibition of either endothelial nitric oxide synthase (eNOS) or extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) restored Ang II-induced contraction in obese rats. Western blot analysis revealed increased protein expression of AT2 receptors in arteries from obese rats. Basal and Ang II-induced ERK1/2 phosphorylation was also increased in obese rats. Blockade of either AT1 or AT2 receptors corrected the increased ERK1/2 phosphorylation in arteries from obese rats to levels observed in control preparations. Phosphorylation of eNOS was increased in obese rats. Incubation with the ERK1/2 inhibitor before Ang II stimulation did not affect eNOS phosphorylation in control rats; however, it corrected the increased phosphorylation of eNOS in obese rats. These results clearly demonstrate that enhanced AT2 receptor and ERK1/2-induced, NO-mediated vasodilation reduces Ang II-induced contraction in an endothelium-dependent manner in obese rats.  相似文献   

19.
We recently demonstrated that Angiotensin-(3-4) [Ang-(3-4)], an Ang II-derived dipeptide, overcomes inhibition of plasma membrane Ca(2+)-ATPase promoted by nanomolar concentrations of Ang II in basolateral membranes of renal proximal tubule cells, with involvement of a so far unknown AT(2)R-dependent and NO-independent mechanism. The present study investigates the signaling pathway triggered by Ang-(3-4) that is responsible for counteracting the inhibitory effect of Ang II, and attempts to elucidate the functional interaction of the dipeptide with Ang II at the level of AT(2)R. Stimulation by cholera toxin of G(s)α protein structurally linked to AT(2)R--as revealed by their co-immunoprecipitation--mimicked the effect of Ang-(3-4) on Ca(2+)-ATPase activity. Furthermore, addition of dibutyril-cAMP (db-cAMP) mimicked Ang-(3-4), whereas the specific PKA inhibitor, PKAi(5-24) peptide, suppressed the counter-regulatory effect of Ang-(3-4) and the AT(2)R agonist, CGP42112A. Membrane-associated PKA activity was stimulated by Ang-(3-4) or CGP42112A to comparable levels as db-cAMP, and the Ang-(3-4) effect was abrogated by the AT(2)R antagonist PD123319, whereas the AT(1)R antagonist Losartan had no effect. Ang-(3-4) stimulated PKA-mediated phosphorylation of Ca(2+)-ATPase and activated PKA to comparable levels. Binding assays demonstrated that Ang-(3-4) could not displace (3)H-Ang II from HEK 293T cells expressing AT(2)R, but 10(-10) mol/L Ang-(3-4) resulted in the appearance of a probable higher-affinity site (picomolar range) for Ang II. The results presented herein demonstrate that Ang-(3-4), acting as an allosteric enhancer, suppresses Ang II-mediated inhibition of Ca(2+)-ATPase through an AT(2)R/cAMP/PKA pathway, after inducing conformational changes in AT(2)R that results in generation of higher-affinity sites for Ang II.  相似文献   

20.
Angiotensinase activities in the kidney of renovascular hypertensive rats   总被引:4,自引:0,他引:4  
In spite of the well-known contribution of angiotensin II (Ang II) in the pathogenesis of Goldblatt two-kidney one clip (G2K1C) hypertension, the importance of other Ang peptides, such as Ang III, Ang IV or Ang 2-10, is scarcely understood. The functional status of these peptides depends on the action of several aminopeptidases called angiotensinases. The metabolism of Ang III to Ang IV by aminopeptidase M (AlaAP) and of Ang I to Ang 2-10 by aspartyl aminopeptidase (AspAP) was evaluated in the renal cortex and medulla of normotensive (Sham-operated) and hypertensive (G2K1C) rats, treated or not with the AT(1) receptor antagonist valsartan. The results demonstrated a highly significant increase of membrane-bound (MEMB) AlaAP in the cortex of the non-ischemic kidney of G2K1C rats compared with the kidney of normal rats and with the clipped kidney of G2K1C rats. This suggests an increased formation of Ang IV in the non-clipped kidney of G2R1C rats. Valsartan reduced MEMB AlaAP and AspAP activities in the renal cortex of normotensive and in the clipped kidney of hypertensive rats. The reduced metabolism of Ang III may prolong its half-life in valsartan-treated animals. These results suggest a role for AlaAP in renovascular hypertension. In addition, the higher AspAP activity of the renal cortex compared to medulla reflects its relative functional difference between both locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号