首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD functions in multiple aspects of cellular metabolism and signaling through enzymes that covalently transfer ADP-ribose from NAD to acceptor proteins, thereby altering their function. NAD is a substrate for two enzyme families, mono-ADP-ribosyltransferases (mARTs) and poly(ADP-ribose) polymerases (PARPs), that covalently transfer an ADP-ribose monomer or polymer, respectively, to acceptor proteins. ART2, a mART, is a phenotypic marker of immunoregulatory cells found on the surface of T lymphocytes, including intestinal intraepithelial lymphocytes (IELs). We have shown that the auto-ADP-ribosylation of the ART2.2 allelic protein is multimeric. Our backbone structural alignment of ART2 (two alleles of the rat art2 gene have been reported, for simplicity, the ART2.2 protein investigated in this study will be referred to as ART2) and PARP suggested that multimeric auto-ADP-ribosylation of ART2 may represent an ADP-ribose polymer, rather than multiple sites of mono-ADP-ribosylation. To investigate this, we used highly purified recombinant ART2 and demonstrated that ART2 catalyzes the formation of an ADP-ribose polymer by sequencing gel and by HPLC and MS/MS mass spectrometry identification of PR-AMP, a breakdown product specific to poly(ADP-ribose). Furthermore, we identified the site of ADP-ribose polymer attachment on ART2 as Arg-185, an arginine in a crucial loop of its catalytic core. We found that endogenous ART2 on IELs undergoes multimeric auto-ADP-ribosylation more efficiently than ART2 on peripheral T cells, suggesting that these distinct lymphocyte populations differ in their ART2 surface topology. Furthermore, ART2.2 IELs are more resistant to NAD-induced cell death than ART2.1 IELs that do not have multimeric auto-ADP-ribosylation activity. The data suggest that capability of polymerizing ADP-ribose may not be unique to PARPs and that poly(ADP-ribosylation), an established nuclear activity, may occur extracellularly and modulate cell function.  相似文献   

2.
The presence of NAD-metabolizing enzymes (e.g., ADP-ribosyltransferase (ART)2) on the surface of immune cells suggests a potential immunomodulatory activity for ecto-NAD or its metabolites at sites of inflammation and cell lysis where extracellular levels of NAD may be high. In vitro, NAD inhibits mitogen-stimulated rat T cell proliferation. To investigate the mechanism of inhibition, the effects of NAD and its metabolites on T cell proliferation were studied using ART2a+ and ART2b+ rat T cells. NAD and ADP-ribose, but not nicotinamide, inhibited proliferation of mitogen-activated T cells independent of ART2 allele-specific expression. Inhibition by P2 purinergic receptor agonists was comparable to that induced by NAD and ADP-ribose; these compounds were more potent than P1 agonists. Analysis of the NAD-metabolizing activity of intact rat T cells demonstrated that ADP-ribose was the predominant metabolite, consistent with the presence of cell surface NAD glycohydrolase (NADase) activities. Treatment of T cells with phosphatidylinositol-specific phospholipase C removed much of the NADase activity, consistent with at least one NADase having a GPI anchor; ART2- T cell subsets contained NADase activity that was not releasable by phosphatidylinositol-specific phospholipase C treatment. Formation of AMP from NAD and ADP-ribose also occurred, a result of cell surface pyrophosphatase activity. Because AMP and its metabolite, adenosine, were less inhibitory to rat T cell proliferation than was NAD or ADP-ribose, pyrophosphatases may serve a regulatory role in modifying the inhibitory effect of ecto-NAD on T cell activation. These data suggest that T cells express multiple NAD and adenine nucleotide-metabolizing activities that together modulate immune function.  相似文献   

3.
ART2a (RT6.1) and ART2b (RT6.2) are NAD glycohydrolases (NADases) that are linked to T lymphocytes by glycosylphosphatidylinositol anchors. Although both mature proteins possess three conserved regions (I, II, III) that form the NAD-binding site and differ by only ten amino acids, only ART2b is auto-ADP-ribosylated and only ART2a is glycosylated. To investigate the structural basis for these differences, wild-type and mutant ART2a and ART2b were expressed in rat mammary adenocarcinoma (NMU) cells and released with phosphatidylinositol-specific phospholipase C. All mutants were immunoreactive NADases. Arginine 204 (Arg204), NH2-terminal to essential glutamate 209 in Region III, is found in ART2b, but not ART2a. Replacement of Arg204 in ART2b with lysine, tyrosine, or glutamate abolished auto-ADP-ribosylation. Unlike wild-type ART2a, ART2a(Y204R) was auto-ADP-ribosylated. The tryptophan mutant ART2b(R204W) was auto-ADP-ribosylated and exhibited enhanced NADase activity. Incubation with NAD and auto-ADP-ribosylation decreased the NADase activities of wild-type ART2b and ART2b (R204W), whereas activity of ART2b(R204K), which is not auto-modified, was unchanged by NAD. Facilitation of auto-ADP-ribosylation by tryptophan 204 suggests that the hydrophobic amino acid mimics an ADP-ribosylated arginine. Thus, Arg204 in ART2b serves as a regulatory switch whose presence is required for additional auto-ADP-ribosylation and regulation of catalytic activity.  相似文献   

4.
A new type of nicotinamide adenine dinucleotide glycohydrolase (NADase) has been isolated from rat liver nuclei. When partially purified chromatin is passed through a Sephadex G-200 column in the presence of 1 M NaCl, enzyme activities catalyzing the liberation of nicotinamide from NAD elute in two peaks. One, which appears in the void volume fraction, hydrolyzes the nicotinamide-ribose linkage of NAD to produce nicotinamide and ADP-ribose in stoichiometric amounts. This activity is not inhibited by 5 mM nicotinamide. The other, which elutes much later, catalyzes the formation of poly(ADP-ribose) from NAD and is completely inhibited by 5 mM nicotinamide. The former, NADase, is DNase-insensitive and thermostable, has a pH optimum of 6.5 to 7, a Km for NAD of 28 muM, and a Ki for nicotinamide of 80 mM, and hydrolyzes NADP as well as NAD. The latter, poly(ADP-ribose) synthetase, is sensitive to DNase treatment and heat labile, has a pH optimum of 8 to 8.5, a Km for NAD of 250 muM and a Ki for nicotinamide of 0.5 mM and is strictly specific for NAD. Further, the former NADase is shown to lack transglycosidase activity, which has been documented to be a general property of NADases derived from animal tissues. These results indicate that the NAD-hydrolyzing enzyme newly isolated from nuclei is a novel type of mammalian NADase which catalyzes the hydrolytic cleavage of the nicotinamide-ribose linkage of NAD.  相似文献   

5.
NAD:arginine mono-ADP-ribosyltransferases catalyze the transfer of ADP-ribose from NAD to the guanidino group of arginine on a target protein. Deduced amino acid sequences of one family (ART1) of mammalian ADP-ribosyltransferases, cloned from muscle and lymphocytes, show hydrophobic amino and carboxyl termini consistent with glycosylphosphatidylinositol (GPI)-anchored proteins. The proteins, overexpressed in mammalian cells transfected with the transferase cDNAs, are released from the cell surface with phosphatidylinositol-specific phospholipase C (PI-PLC), and display immunological and biochemical characteristics consistent with a cell surface, GPI-anchored protein. In contrast, the deduced amino acid sequence of a second family (ART5) of transferases, cloned from murine lymphoma cells and expressed in high abundance in testis, displays a hydrophobic amino terminus, consistent with a signal sequence, but lacks a hydrophobic signal sequence at its carboxyl terminus, suggesting that the protein is destined for export. Consistent with the surface localization of the GPI-linked transferases, multiple surface substrates have been identified in myotubes and activated lymphocytes, and, notably, include integrin subunits. Similar to the bacterial toxin ADP-ribosyltransferases, the mammalian transferases contain the characteristic domains involved in NAD binding and ADP-ribose transfer, including a highly acidic region near the carboxy terminus, which, when disrupted by in vitro mutagenesis, results in a loss of enzymatic activity. The carboxyl half of the protein, synthesized as a fusion protein in E. coli, possessed NADase, but not ADP-ribosyltransferase activity. These findings are consistent with the existence at the carboxyl terminus of ART1 of a catalytically active domain, capable of hydrolyzing NAD, but not of transferring ADP-ribose to a guanidino acceptor.  相似文献   

6.
Glutamine synthetase from ovine brain has a critical arginine residue at the catalytic site (Powers, S. G., and Riordan, J.F. (1975) Proc. Natl. Acad. Sci. U.S. A. 72, 2616-2620). This enzyme is now shown to be a substrate for a purified NAD:arginine ADP-ribosyltransferase from turkey erythrocyte cytosol that catalyzes the transfer of ADP-ribose from NAD to arginine and purified proteins. The transferase catalyzed the inactivation of the synthetase in an NAD-dependent reaction; ADP-ribose and nicotinamide did not substitute for NAD. Agmatine, an alternate ADP-ribose acceptor in the transferase-catalyzed reaction, prevented inactivation of glutamine synthetase. MgATP, a substrate for the synthetase which was previously shown to protect that enzyme from chemical inactivation, also decreased the rate of inactivation in the presence of NAD and ADP-ribosyltransferase. Using [32P]NAD, it was observed that approximately 90% inactivation occurred following the transfer of 0.89 mol of [32P]ADP-ribose/mol of synthetase. The erythrocyte transferase also catalyzed the NAD-dependent inactivation of glutamine synthetase purified from chicken heart; 0.60 mol of ADP-ribose was transferred per mol of enzyme, resulting in a 95% inactivation. As noted with the ovine brain enzyme, agmatine and MgATP protected the chicken synthetase from inactivation and decreased the extent of [32P]ADP-ribosylation of the synthetase. These observations are consistent with the conclusion that the NAD:arginine ADP-ribosyltransferase modifies specifically an arginine residue involved in the catalytic site of glutamine synthetase. Although the transferase can use numerous proteins as ADP-ribose acceptors, some characteristics of this particular arginine, perhaps the same characteristics that are involved in its function in the catalytic site, make it a favored ADP-ribose acceptor site for the transferase.  相似文献   

7.
ADP-ribosyltransferases (ARTs) are a family of enzymes that catalyze the covalent transfer of an ADP-ribose moiety, derived from NAD, to an amino acid of an acceptor protein, thereby altering its function. To date, little information is available on the protein target specificity of different ART family members. ART2 is a T-cell-specific transferase, attached to the cell surface by a glycosylphosphatidylinositol (GPI) anchor, and also found in serum. Here we investigated the role of ART2 localization in serum or on the cell surface, or solubilized with detergents or enzymes, on its target protein specificity. We found that detergent solubilization of cell membranes, or release of ART2 by phosphoinositide-specific phospholipase C treatment, altered the ability of ART2 to ADP-ribosylate high or low molecular weight histone proteins. Similarly, soluble recombinant ART2 (lacking the GPI anchor) showed a different histone specificity than did cell-bound ART2. When soluble ART2 was incubated with serum proteins in the presence of [32P]-labeled NAD, several serum proteins were ADP-ribosylated in a thiol-specific manner. Mass spectrometry of labeled proteins identified albumin and transferrin as ADP-ribosylated proteins in serum. Collectively, these studies reveal that the membrane or solution environment of ART2 plays a pivotal role in determining its substrate specificity.  相似文献   

8.
An arginine-specific ADP-ribosyltransferase, named ADP-ribosyltransferase A, was partially purified from human platelets using polyarginine as an ADP-ribose acceptor. When human platelet membranes were incubated with the transferase A in the presence of NAD+, Gs, a stimulatory guanine nucleotide-binding protein of the adenylate cyclase was specifically mono-ADP-ribosylated. ADP-ribose transfer to Gs by this enzyme was suppressed when membranes were pre-ADP-ribosylated by cholera toxin. Incubation of membranes with the transferase A resulted in activation of the adenylate cyclase system. This stimulatory effect of the transferase A on the adenylate cyclase system was inhibited by the presence of polyarginine. These results indicate a role of ADP-ribosyltransferase A in regulation of the adenylate cyclase system via endogenous mono-ADP-ribosylation of Gs.  相似文献   

9.
We have characterized the effect of poly(ADP-ribose) polymerase automodification on the enzyme's activities, which include poly(ADP-ribose) synthesis and NADase activity. The apparent Km of the enzyme for NAD+ during polymer synthesis is higher than the one measured for alternate NADase activity. Furthermore, we have found that there are 28 automodification sites, in contrast to the 15 sites (postulated to be on the 15 glutamic acids) reported to be present in the automodification domain. For the first time, we show that some of these acceptor sites are outside the reported automodification domain (15 kDa); we demonstrate automodification in the NAD+ binding domain (55.2 kDa) and the DNA binding domain (42.5 kDa). We have analyzed the relationship between the number of sites modified on poly(ADP-ribose) polymerase and its effect on the polymerization activity and its alternate NADase activity. Automodification greatly altered both enzyme activities, decreasing both polymer synthesis and alternate NADase activity.  相似文献   

10.
Mono-ADP-ribosyltransferases (ART1-7) transfer ADP-ribose from NAD+ to proteins (transferase activity) or water (NAD glycohydrolase activity). The mature proteins contain two domains, an alpha-helical amino terminus and a beta-sheet-rich carboxyl terminus. A basic region in the carboxyl termini is encoded in a separate exon in ART1 and ART5. Structural motifs are conserved among ART molecules. Successive amino- or carboxyl-terminal truncations of ART1, an arginine-specific transferase, identified regions that regulated transferase and NAD glycohydrolase activities. In mouse ART1, amino acids 24-38 (ART-specific extension) were needed to inhibit both activities; amino acids 39-45 (common ART coil) were required for both. Successive truncations of the alpha-helical region reduced transferase and NAD glycohydrolase activities; however, truncation to residue 106 enhanced both. Removal of the carboxyl-terminal basic domain decreased transferase, but enhanced NAD glycohydrolase, activity. Thus, amino- and carboxyl-terminal regions of ART1 are required for transferase activity. The enhanced glycohydrolase activity of the shorter mutants indicates that sequences, which are not part of the NAD binding, core catalytic site, exert structural constraints, modulating substrate specificity and catalytic activity. These functional domains, defined by discrete exons or structural motifs, are found in ART1 and other ARTs, consistent with conservation of structure and function across the ART family.  相似文献   

11.
Mouse Rt6.1 and Rt6.2, homologues of rat T-cell RT6 antigens, catalyze arginine-specific ADP-ribosylation. Without an added ADP-ribose acceptor, Rt6.2 shows NAD glycohydrolase (NADase) activity. However, Rt6.1 has been reported to be primarily an ADP-ribosyltransferase, but not an NADase. In the present study, we obtained evidence that recombinant Rt6.1 catalyzes NAD glycohydrolysis but only in the presence of DTT. The NADase activity of Rt6.1 observed in the presence of DTT was completely inhibited by N-ethylmaleimide (NEM). Native Rt6.1 antigen, immunoprecipitated from BALB/c mouse splenocytes with polyclonal antibodies generated against recombinant RT6.1, also exhibited NADase activity in the presence of DTT. Compared with Rt6.2, Rt6.1 has two extra cysteine residues at positions 80 and 201. When Cys-80 and Cys-201 in Rt6.1 were replaced with the corresponding residues of Rt6.2, serine and phenylalanine, respectively, Rt6.1 catalyzed the NADase reaction even in the absence of DTT. Conversely, replacing Ser-80 and Phe-201 in Rt6.2 with cysteines, as in Rt6.1, converted the thiol-independent Rt6.2 NADase to a thiol-dependent enzyme. Kinetic study of the NADase reaction revealed that the affinity of Rt6.1 for NAD and the rate of catalysis increased in the presence of DTT. Moreover, the NADase activity of Rt6.1 expressed on COS-7 cells was stimulated by culture supernatant from activated mouse macrophages, even in the absence of DTT. From these observations, we conclude that t!he Rt6.1 antigen has thiol-dependent NADase activity, and that Cys-80 and Cys-201 confer thiol sensitivity to Rt6.1 NADase. Our results also suggest that upon the interaction of T-cells expressing Rt6.1 with activated macrophages, the NADase activity of the antigen will be stimulated.  相似文献   

12.
NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.  相似文献   

13.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

14.
J C Osborne  S J Stanley  J Moss 《Biochemistry》1985,24(19):5235-5240
A subunit of choleragen and an erythrocyte ADP-ribosyltransferase catalyze the transfer of ADP-ribose from NAD to proteins and low molecular weight guanidino compounds such as arginine. These enzymes also catalyze the hydrolysis of NAD to nicotinamide and ADP-ribose. The kinetic mechanism for both transferases was investigated in the presence and absence of the product inhibitor nicotinamide by using agmatine as the acceptor molecule. To obtain accurate estimates of kinetic parameters, the transferase and glycohydrolase reactions were monitored simultaneously by using [adenine-2,8-3H]NAD and [carbonyl-14C]NAD as tracer compounds. Under optimal conditions for the transferase assay, NAD hydrolysis occurred at less than 5% of the Vmax for ADP-ribosylation; at subsaturating agmatine concentrations, the ratio of NAD hydrolysis to ADP-ribosylation was significantly higher. Binding of either NAD or agmatine resulted in a greater than 70% decrease in affinity for the second substrate. All data were consistent with a rapid equilibrium random sequential mechanism for both enzymes.  相似文献   

15.
Epithelial cells lining human airways and cells recruited to airways participate in the innate immune response in part by releasing human neutrophil peptides (HNP). Arginine-specific ADP-ribosyltransferases (ART) on the surface of these cells can catalyze the transfer of ADP-ribose from NAD to proteins. We reported that ART1, a mammalian ADP-ribosyltransferase, present in epithelial cells lining the human airway, modified HNP-1, altering its function. ADP-ribosylated HNP-1 was identified in bronchoalveolar lavage fluid (BALF) from patients with asthma, idiopathic pulmonary fibrosis, or a history of smoking (and having two common polymorphic forms of ART1 that differ in activity), but not in normal volunteers or patients with lymphangioleiomyomatosis. Modified HNP-1 was not found in the sputum of cystic fibrosis patients or in leukocyte granules of normal volunteers. The finding of ADP-ribosyl-HNP-1 in BALF but not in leukocyte granules suggests that the modification occurred in the airway. Most of the HNP-1 in the BALF from individuals with a history of smoking was, in fact, mono- or di-ADP-ribosylated. ART1 synthesized in Escherichia coli, glycosylphosphatidylinositol-anchored ART1 released with phosphatidylinositol-specific phospholipase C from transfected NMU cells, or ART1 expressed endogenously on C2C12 myotubes modified arginine 14 on HNP-1 with a secondary site on arginine 24. ADP-ribosylation of HNP-1 by ART1 was substantially greater than that by ART3, ART4, ART5, Pseudomonas aeruginosa exoenzyme S, or cholera toxin A subunit. Mouse ART2, which is an NAD:arginine ADP-ribosyltransferase, was able to modify HNP-1, but to a lesser extent than ART1. Although HNP-1 was not modified to a significant degree by ART5, it inhibited ART5 as well as ART1 activities. Human beta-defensin-1 (HBD1) was a poor transferase substrate. Reduction of the cysteine-rich defensins enhanced their ability to serve as ADP-ribose acceptors. We conclude that ADP-ribosylation of HNP-1 appears to be primarily an activity of ART1 and occurs in inflammatory conditions and disease.  相似文献   

16.
HvnA and HvnB are proteins secreted by Vibrio fischeri ES114, an extracellular light organ symbiont of the squid Euprymna scolopes, that catalyze the transfer of ADP-ribose from NAD(+) to polyarginine. Based on this activity, HvnA and HvnB were presumptively designated mono-ADP-ribosyltransferases (ARTases), and it was hypothesized that they mediate bacterium-host signaling. We have cloned hvnA and hvnB from strain ES114. hvnA appears to be expressed as part of a four-gene operon, whereas hvnB is monocistronic. The predicted HvnA and HvnB amino acid sequences are 46% identical to one another and share 44% and 34% identity, respectively, with an open reading frame present in the Pseudomonas aeruginosa genome. Four lines of evidence indicate that HvnA and HvnB mediate polyarginine ADP-ribosylation not by ARTase activity, but indirectly through an NAD(+)-glycohydrolase (NADase) activity that releases free, reactive, ADP-ribose: (i) like other NADases, and in contrast to the ARTase cholera toxin, HvnA and HvnB catalyzed ribosylation of not only polyarginine but also polylysine and polyhistidine, and ribosylation was inhibited by hydroxylamine; (ii) HvnA and HvnB cleaved 1, N(6)-etheno-NAD(+) and NAD(+); (iii) incubation of HvnA and HvnB with [(32)P]NAD(+) resulted in the production of ADP-ribose; and (iv) purified HvnA displayed an NADase V(max) of 400 mol min(-1) mol(-1), which is within the range reported for other NADases and 10(2)- to 10(4)-fold higher than the minor NADase activity reported in bacterial ARTase toxins. Construction and analysis of an hvnA hvnB mutant revealed no other NADase activity in culture supernatants of V. fischeri, and this mutant initiated the light organ symbiosis and triggered regression of the light organ ciliated epithelium in a manner similar to that for the wild type.  相似文献   

17.
Guanidine group specific ADP-ribosyltransferase in murine cells   总被引:1,自引:0,他引:1  
We have identified a guanidine group specific ADP-ribosyltransferase activity, capable of transferring an ADP-ribose group from NAD to a low molecular weight guanidine compound [p-(nitrobenzylidine)amino]guanidine and proteins such as histone and poly-L-arginine, in a variety of murine cell lines. The enzyme activity appears to be associated with an integral membrane protein of apparent molecular weight 30-33 kDa. Incubation of the viable cells in isotonic phosphate buffered saline with [32P]NAD results in the incorporation of label into cellular proteins. Dimethyl sulfoxide treatment of the cells downregulates the transferase activity as well as the ADP-ribosylation of cell proteins with extracellular NAD.  相似文献   

18.
Transition of proliferating Ehrlich ascites tumor cells (3 days after transplantation) to the non-proliferating status (8--14 days after transplantation) was associated with an increase in total mono (ADP-ribose) protein conjugates. This increase was largely confined to the NH2OH-resistant subfraction. When the amounts of mono-(ADP-ribose) conjugates from 20% trichloroacetic acid precipitates were compared with those from 5% perchloric acid precipitates, no significant differences were seen. This fact excludes histone H1 as a major mono (ADP-ribose) acceptor in vivo in these cells. Transition to the resting state was also associated with a small decrease in NAD levels, and with no significant changes of total ADP-ribose transferase activity. However intrinsic ADP-ribose transferase activity as expressed in permeabilized cells was increased, being correlated with the changes in the level of the NH2OH-resistant mono (ADP-ribose) protein conjugates. This shows that alterations in intrinsic transferase activity may, in general, indicate similar alterations in major subfractions of ADP-ribose conjugates. Intrinsic ADP-ribose transferase activity exhibited an inverse relationship to ornithine decarboxylase activity.  相似文献   

19.
20.
Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 microM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 +/- 1.05 ng/10(5) cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodified enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号