首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Epstein-Barr virus gp350/220 envelope protein mediates virus attachment to the EBV/C3dg receptor (CR2) of human B lymphocytes. Synthetic peptides corresponding to two regions in gp350/220, which have a similar amino acid sequence with the complement C3dg protein, were used to identify a receptor binding epitope. A peptide corresponding to the N terminus of gp350/220, EDPGFFNVE, bound to purified CR2 and to CR2 positive but not CR2 negative B and T lymphoblastoid cell lines. Soluble monomeric gp350/220 peptide blocked CR2 binding to immobilized EBV, while multimeric forms of the N-terminal gp350/220 peptide conjugated to albumin efficiently blocked recombinant gp350/220 and C3dg binding to B cells as well as EBV-induced B cell proliferation and transformation. These studies indicate that the N-terminal region of gp350/220 plays a crucial role in mediating the earliest stages of EBV infection of B cells and provides a molecular basis for the restricted host cell EBV tropism.  相似文献   

2.
Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with epithelial cell and B-cell malignancies. EBV infection of B lymphocytes is essential for acute and persistent EBV infection in humans; however, the role of epithelial cell infection in the normal EBV life cycle remains controversial. The rhesus lymphocryptovirus (LCV) is an EBV-related herpesvirus that naturally infects rhesus macaques and can be used experimentally to model persistent B-cell infection and B-cell lymphomagenesis. We now show that the rhesus LCV can infect epithelial cells in immunosuppressed rhesus macaques and can induce epithelial cell lesions resembling oral hairy leukoplakia in AIDS patients. Electron microscopy, immunohistochemistry, and DNA-RNA in situ hybridization were used to identify the presence of a lytic rhesus LCV infection in these proliferative, hyperkeratotic, or parakeratotic epithelial cell lesions. These studies demonstrate that the rhesus LCV has tropism for epithelial cells, in addition to B cells, and is a relevant animal model system for studying the role of epithelial cell infection in EBV pathogenesis.  相似文献   

3.
4.
The extracellular domain of CR2, the Epstein-Barr virus (EBV)/C3d receptor of B lymphocytes, contains 15 or 16 tandemly arranged short consensus repeat elements (SCR). Recombinant CR2 proteins containing SCR 1 and 2 fused to Staphylococcus aureus protein A (PA-CR2) and to murine complement factor H SCR 20 (CR2FH) were expressed in Escherichia coli and in insect cells, respectively. These recombinant CR2 molecules retained functional activity as indicated by their ability to bind to C3dg in an enzyme-linked immunosorbent assay and to inhibit EBV gp350/220 binding to B cells. PA-CR2 and CR2FH were as efficient in blocking EBV gp350/220 binding as the full-length CR2 extracellular domain, indicating that the first two SCR of CR2 contain the majority of the ligand binding activity of the receptor. PA-CR2 and CR2FH inhibited EBV-induced B-cell proliferation in vitro and blocked the development of EBV-induced lymphoproliferative disease in severe combined immunodeficient mice reconstituted with human lymphocytes. These studies indicate that soluble forms of truncated CR2 proteins may have potential therapeutic value in the treatment of EBV-induced lymphoproliferative disorders in humans that involve viral replication.  相似文献   

5.
In pursuing studies on the early events in the infection of human B cells by Epstein-Barr virus (EBV), we examined the host cell attachment phase with a panel of B-cell-specific monoclonal antibodies. One of the monoclonal antibodies, OKB7, directly blocked the attachment of purified EBV to B lymphocytes in the absence of a second anti-immunoglobulin antibody and thereby prevented EBV infection of tonsil and peripheral blood B cells. Although earlier studies have shown a close association of the EBV and complement receptor (CR2), an anti-CR2 monoclonal antibody, anti-B2, did not directly block the binding of EBV to B cells. A comparison of the structures recognized by these monoclonal antibodies on various cell types and their functional and physiochemical properties was undertaken. Flow cytometric analysis revealed that the molecules detected by OKB7 and anti-B2 were coexpressed to the same extent on B cells but were not expressed on T-cell lines. OKB7 and anti-B2 both immunoprecipitated a 145,000-molecular-weight membrane protein with an isoelectric point of 8.2 from membrane extracts of Raji lymphoblastoid cells. OKB7 and, to a lesser extent, anti-B2 directly blocked the attachment of C3d,g-coated fluorescent microspheres and sheep erythrocytes bearing C3d to B cells, indicating that these antibodies also react with CR2. These studies indicate that the EBV-CR2 receptor is a single membrane glycoprotein which possesses multiple antigenic and functional epitopes.  相似文献   

6.
Epstein-Barr virus (EBV) infection of B cells is associated with lymphoma and other human cancers. EBV infection is initiated by the binding of the viral envelope glycoprotein (gp350) to the cell surface receptor CR2. We determined the X-ray structure of the highly glycosylated gp350 and defined the CR2 binding site on gp350. Polyglycans shield all but one surface of the gp350 polypeptide, and we demonstrate that this glycan-free surface is the receptor-binding site. Deglycosylated gp350 bound CR2 similarly to the glycosylated form, suggesting that glycosylation is not important for receptor binding. Structure-guided mutagenesis of the glycan-free surface disrupted receptor binding as well as binding by a gp350 monoclonal antibody, a known inhibitor of virus-receptor interactions. These results provide structural information for developing drugs and vaccines to prevent infection by EBV and related viruses.  相似文献   

7.
A panel of B cell-specific monoclonal antibodies that identify the CR2/EBV receptor were examined for their ability to mimic the T-independent mitogenic agent, EBV, and thus activate human peripheral blood B lymphocytes. Two of four different anti-CR2/EBV monoclonal antibodies, OKB7 and AB-1, produced a 50-fold to 200-fold dose-dependent stimulation of DNA synthesis of peripheral blood mononuclear cells. One of the other monoclonal antibodies, anti-B2, had slight activity, and the other, HB-5, was completely inactive. One of the mitogenic antibodies, OKB7, which directly inhibits binding and infection of B cells by EBV in the absence of a second anti-immunoglobulin antibody, was examined in further detail. Both the intact antibody in soluble form and its pepsin-derived F(ab')2 fragment stimulated DNA synthesis of unseparated B and T lymphocytes. Peak stimulation of DNA synthesis in peripheral blood mononuclear cells occurred between 4 to 6 days. B cells were responsible for incorporation of [3H]thymidine. However, T cells were required for activation of peripheral blood mononuclear cells by OKB7. OKB7, as well as the other mitogenic monoclonal anti-EBV/CR2 receptor antibody, also induced B cells to differentiate after 6 to 10 days of culture as indicated by polyclonal Ig secretion. IgM was the predominate immunoglobulin secreted. These studies thus indicate that certain epitopes on the EBV/CR2 receptor trigger B cells to divide and differentiate. This pathway of B cell activation, in contrast to that produced by EBV, is T cell dependent.  相似文献   

8.
The structure of CR2, the human C3d,g/EBV receptor (CR2/CD21) consists of 15 or 16 60-70 amino acid repeats called short consensus repeats (SCRs) followed by a transmembrane and a 34-amino acid intracytoplasmic domain. Functions of CR2 include binding the human complement component C3d,g when it is covalently attached to targets or cross-linked in the fluid phase. In addition, CR2 binds the Epstein-Barr virus (EBV) and mediates internalization of EBV and subsequent infection of cells. In order to explore functional roles of the repetitive extracytoplasmic SCR structure and the intracytoplasmic domain of CR2, we have created truncated CR2 (rCR2) mutants bearing serial deletions of extracytoplasmic SCRs and also the intracytoplasmic tail. We then stably transfected these rCR2 mutants into two cell lines, murine fibroblast L cells and human erythroleukemic K562 cells. Phenotypic analysis of these expressed mutants revealed that 1) The C3d,g- and EBV-binding sites are found in the two amino-terminal SCRs of CR2, 2) expression of SCRs 3 and 4 is further required for high affinity binding to soluble cross-linked C3d,g, 3) the intracytoplasmic domain of CR2 is not required for binding C3d,g or EBV but is necessary for internalization of cross-linked C3d,g as well as for EBV infection of cells, 4) monoclonal anti-CR2 antibodies with similar activities react with single widely separated epitopes, and 5) no functional roles can yet be clearly assigned to SCRs 5-15, as rCR2 mutants not containing these SCRs show no major differences from wild-type rCR2 in binding or internalizing cross-linked C3d,g or mediating EBV binding and infection.  相似文献   

9.
We transfected human complement receptor 2 (CR2/CD21) cDNA containing eukaryotic expression constructs into CR2-negative mouse L cells and human K562 erythroleukemia cells. We subsequently selected stably transformed cells that expressed human CR2, as assessed by flow microfluorimetry analysis and immunoprecipitation of 125I-labeled surface membranes using the monoclonal anti-CR2 antibody, HB5. Utilizing flow microfluorimetry analysis, epitopes recognized by anti-CR2 mAb HB5, OKB7, B2, and four other anti-CR2 antibodies were detected on CR2 expressing transfectants but not parental cells. In addition, CR2 expressing transfected cells efficiently formed rosettes with sheep erythrocyte intermediates bearing human C3bi and C3d, but not C4b or C3b, consistent with the known ligand specificity of CR2. CR2 containing transfectants were also demonstrated to specifically bind EBV. Infection with EBV of CR2 expressing L cells and K562 cells resulted in mean expression of Epstein-Barr nuclear Ag (EBNA) at 48 h in 0.35% of CR2 expressing L cells and 3.7% of CR2 expressing K562 cells. Parental L cells and K562 cells did not express EBNA after EBV infection. These results indicate that CR2 alone is sufficient to transfer both C and EBV receptor functions to heterologous cells. In addition, expression of EBNA was found to be significantly higher in human K562 than mouse L cells, both expressing the same recombinant receptor. These results suggest that mechanisms other than CR2 binding lead to inefficient EBV infection and/or EBNA synthesis in mouse fibroblasts.  相似文献   

10.
Epstein-Barr virus (EBV), a herpesvirus with oncogenic potential, is camouflaged with glycoprotein 350/220, which mimics the human ligand C3dg and thereby binds to and exploits complement receptor type 2 (CR2; CD21), the EBV receptor. It has not been possible to determine the role of CR2 during postbinding events of viral infection because all B lymphocytes express endogenous CR2, precluding an informative study of receptor mutants. We have overcome this obstacle through creation of a novel experimental system based on molecular dissection of the ligand-binding domains of human CR2 and murine CR2. Our results demonstrate first, that two discontinuous amino acid substitutions within the ligand-binding domain of murine CR2 render it capable of mediating EBV infection of human B-lymphoblastoid cells, and second, that the specific role of CR2 during EBV infection is to capture virions at the cell surface, after which cofactors not associated with CR2 mediate postbinding events. These are the first studies to be described in which a cell that is normally susceptible to viral infection can be manipulated so as to direct entry of virions via recombinant or endogenous receptors.  相似文献   

11.
12.
Epstein-Barr virus (EBV) invasion of B-lymphocytes involves EBV gp350/220 binding to B-lymphocyte CR2. The anti-gp350 monoclonal antibody (mAb)-72A1 Fab inhibits this binding and therefore blocks EBV invasion of target cells. However, gp350/220 regions interacting with mAb 72A1 and involved in EBV invasion of target cells have not yet been identified. This work reports three gp350/220 regions, defined by peptide 11382, 11389, and 11416 sequences, that are involved in EBV binding to B-lymphocytes. Peptides 11382, 11389, and 11416 bound to CR2(+) but not to CR2(-) cells, inhibited EBV invasion of cord blood lymphocytes (CBLs), were recognized by mAb 72A1, and inhibited mAb 72A1 binding to EBV. Peptides 11382 and 11416 binding to peripheral blood lymphocytes (PBLs) induced interleukin-6 protein synthesis in these cells, this phenomenon being inhibited by mAb 72A1. The same behavior has been reported for gp350/220 binding to PBLs. Anti-peptide 11382, 11389, and 11416 antibodies inhibited EBV binding and EBV invasion of PBLs and CBLs. Peptide 11382, 11389, and 11416 sequences presented homology with the C3dg regions coming into contact with CR2 (C3dg and gp350 bound to similar CR2 regions). These peptides could be used in designing strategies against EBV infection.  相似文献   

13.
选用产EB病毒的绒猴淋巴细胞B95-8系和补体受体2型(complement receptor 2,CR2)与多聚免疫球蛋白受体(polymeric immunoglobulin receptor,plgR)表达阴性的人水生化上皮细胞Hacat系共培养,进行细胞接触感染实验。一周后去除B95-8细胞,仅留Hacat细胞,并以自行改进的方法鉴定前者是否得以彻底去除。在证实没有.B95-8残留后,PCR和原位杂交分别检验剩余Hacat细胞中EB病毒的感染结果。实验结果表明:改进的方法能够灵敏和简便地判断B95-8细胞的污染与否,并且与.B95-8细胞接触共培养的Hacat细胞能被EB病毒有效地感染,后者暗示了EB病毒对上皮细胞可能存在细胞融合和CR2或plgR介导之外新的感染途径。本研究在一定程度上简化了前人的细胞接触感染方法,也为建立天然的EB病毒自发有效地感染上皮细胞的模型奠定了基础。  相似文献   

14.
采用病毒受体基因转移技术建立EB病毒细胞感染模型   总被引:3,自引:0,他引:3  
纪志武 Takad.  K 《病毒学报》1994,10(2):154-158
  相似文献   

15.
Epstein-Barr virus (EBV) was purified and biotinylated without significant loss of its cell-transforming activity. The use of biotinylated virus in conjunction with antibodies specific for selected cell surface molecules and flow cytometric analysis allowed for the positive identification of the virus-binding lymphocytes among a heterogeneous mononuclear cell population. Biotinylated EBV efficiently bound to all B lymphocytes, including those bearing surface mu, delta, gamma, and alpha immunoglobulin heavy chains or the surface CD5 (Leu-1) marker, but not to T lymphocytes, natural killer cells, or monocytes. By using biotinylated EBV and specific monoclonal antibodies in competitive inhibition experiments, it was also found that the virus attaches to an epitope on the CR2 molecule (the receptor for C3d and EBV), which is close to or identical with the one recognized by OKB7 monoclonal antibody, and that cell surface structures other than CR2 cannot mediate attachment of EBV. Moreover, studies on the binding of the virus to induced B lymphocytes (cells in S through G2 phase), and this was associated with the disappearance of the surface CR2 molecule and the inability of the virus to attach to these cells. The approach described here should be useful in studying the attachment of other viruses, identifying the specific cell types involved, and analyzing the effect of the cell cycle on virus binding.  相似文献   

16.
Two nasopharyngeal carcinoma (NPC) cell lines and one keratinocyte cell line could be infected with Epstein-Barr virus (EBV) by cocultivation with virus-producing cells but not by cell-free virus. Using porous culture inserts to manipulate the cell-to-cell contact, we demonstrated that contact between EBV donor B cells and EBV recipient epithelial cells was required for the infection. Cell-to-cell contact not only provided a CR2-independent route of infection but also enhanced CR2-mediated infection in a synergistic manner. Activity of two EBV promoters (Cp and Wp) and expression of EBNA2 were detected in the infected population. A small proportion of the infected cells spontaneously entered an EBV lytic state, which could be induced prominently by chemical treatment. This study provides information on how EBV may infect epithelial cells in vivo, such as at the onset of NPC development.  相似文献   

17.
The 145-kDa molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into 14C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3d. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.  相似文献   

18.
X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP(+) and SAP(-) cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8(+) T cells specific for CMV and influenza were distributed across SAP(+) and SAP(-) populations, EBV-specific cells were exclusively SAP(+). The preferential recruitment of SAP(+) cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8(+) T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP(-) clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP(-) CD8(+) T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited.  相似文献   

19.
The Epstein-Barr virus (EBV) is a member of the herpes family of viruses and is very common in humans. EBV is most often associated with infectious mononucleosis. However, it is estimated that 1% of tumors including lymphoproliferative, epithelial and mesenchymal are linked to EBV infection. EBV has a tropism for certain epithelial cells, lymphocytes and myocytes. Like other herpesviruses, EBV has both lytic and latent phases of infection. In the latent form, EBV-encoded genes ensure the survival of the viral genome, allowing it to circumvent the host's immune surveillance by limited expression of viral proteins and carries with it the risk of neoplastic transformation. Cytologists are likely to encounter EBV-associated malignancies in cytology material but unlike other herpesviruses, EBV does not evoke a viral cytopathic effect. The manifestation of EBV-related tumors is also often variable depending upon the patient's immune status. Therefore, knowledge of the patient's EBV status and immune competence (e.g. HIV-infection or transplant-related immunosuppression) combined with the cytomorphology and results of ancillary studies are often all required to make a diagnosis of EBV-associated malignancy. This review discusses the unique cytomorphology and ancillary studies required to diagnose EBV-related neoplasms.  相似文献   

20.
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号