首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the rate of oxygen consumption by the Lymnaea stagnalis embryos. The rate of oxygen consumption increased consistently during embryogenesis. The volume specific rate of oxygen consumption increased initially from the early cleavage stages until the gastrula stage and then decreased gradually to the eclosion of snails. There are three periods in embryogenesis of L. stagnalis, which differ in the coefficients of allometric dependence between the rate of oxygen consumption and volume of embryos: (1) early embryogenesis, when the increase in the rate of oxygen consumption is not accompanied by the growth of volume of the embryos; (2) larval period (trochophore and veliger stages; exponential coefficient k = 0.514), and (3) postlarval period (exponential coefficient k = 0.206).  相似文献   

2.
Embryos of Austrofundulus limnaeus are exceptional in their ability to tolerate prolonged bouts of complete anoxia. Hypoxia and anoxia are a normal part of their developmental environment. Here, we exposed embryos to a range of PO2 levels at two different temperatures (25 and 30 °C) to study the combined effects of reduced oxygen and increased temperature on developmental rate, heart rate, and metabolic enzyme capacity. Hypoxia decreased overall developmental rate and caused a stage-specific decline in heart rate. However, the rate of early development prior to the onset of organogenesis is insensitive to PO2. Increased incubation temperature caused an increase in the developmental rate at high PO2s, but hindered developmental progression under severe hypoxia. Embryonic DNA content in pre-hatching embryos was positively correlated with PO2. Citrate synthase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase capacity were all reduced in embryos developing under hypoxic conditions. Embryos of A. limnaeus are able to develop normally across a wide range of PO2s and contrary to most other vertebrates severe hypoxia is not a teratogen. Embryos of A. limnaeus do not respond to hypoxia through an increase in the capacity for enzymatic activity of the metabolic enzymes lactate dehydrogenase, citrate synthase, or phosphoenolpyruvate carboxykinase. Instead they appear to adjust whole-embryo metabolic capacity to match oxygen availability. However, decreased DNA content in hypoxia-reared embryos suggests that cellular enzymatic capacity may remain unchanged in response to hypoxia, and the reduced capacity may rather indicate reduced cell number in hypoxic embryos.  相似文献   

3.
We have earlier found that freshwater pond snails Helisoma trivolvis and Lymnaea stagnalis, when reared under conditions of starvation, release chemical signals that reversibly suppress larval development of conspecific embryos. Here, we report that (i) these signals are not strictly conspecific and affect also the embryos of a closely related species, which occupies a similar environmental niche; (ii) besides the development of embryos, the signals also affect the release of main motor programs, such as locomotion, feeding, and cardiac activity; (iii) action of the signals is bidirectional: they retard the development and release of motor programs at the early larval stages (trochophore to veliger) and accelerate them at later stages (late veliger to hatching). A possible adaptive significance of the described phenomena is discussed.  相似文献   

4.
5.
Brooding in invertebrates serves to protect embryos from stressful external conditions by retaining progeny inside the female body, effectively reducing the risk of pelagic stages being exposed to predation or other environmental stressors, but with accompanying changes in pallial fluid characteristics, including reduced oxygen availability. Brooded embryos are usually immobile and often encapsulated, but in some Ostrea species the embryos move freely inside the female pallial cavity in close association with the mother’s gills for as long as eight weeks. We used endoscopic techniques to characterize the circulation pattern of embryos brooded by females of the oyster, Ostrea chilensis. Progeny at embryonic and veliger stages typically circulated in established patterns that included the use of dorsal and ventral food grooves (DFG, VFG) to move anteriorly on the gills. Both embryos and veligers accumulated around the mother’s palps, and remained there until an active maternal countercurrent moved them to the gill inhalant area. Both food grooves were able to move embryos, veligers, and food-particle aggregates anteriorly, but the DFG was more important in progeny transport; early embryos were moved more rapidly than veligers in the DFG. A microcirculation pattern of embryos was apparent when they were moved by gill lamellae: when they were close to the VFG, most embryos lost gill contact and ´´fell´´ down to the DFG. Those that actually reached the DFG moved anteriorly, but others came into contact with the base of the lamellae and again moved towards the VFG. The circulation pattern of the progeny appears well-suited for both cleaning them and directing them posteriorly to an area where there is more oxygen and food than in the palp region. This process for actively circulating progeny involves the feeding structures (gill and palps) and appears to be energetically costly for the female. It also interferes with feeding, which could explain the poor energy balance previously documented for brooding females of this species.  相似文献   

6.
We examined dpp expression patterns in the pulmonate snail Lymnaea stagnalis and analyzed the functions of dpp using the Dpp signal inhibitor dorsomorphin in order to understand developmental mechanisms and evolution of shell formation in gastropods. The dpp gene is expressed in the right half of the circular area around the shell gland at the trochophore stage and at the right-hand side of the mantle at the veliger stage in the dextral snails. Two types of shell malformations were observed when the Dpp signals were inhibited by dorsomorphin. When the embryos were treated with dorsomorphin at the 2-cell and blastula stages before the shell gland is formed, the juvenile shells grew imperfectly and were not mineralized. On the other hand, when treated at the trochophore and veliger stage after the shell gland formation, juvenile shells grew to show a cone-like form rather than a normal coiled form. These results indicated that dpp plays important roles in the formation and coiling of the shell in this gastropod species.  相似文献   

7.
Dispersal, establishment, and spread of aquatic invasive species such as the zebra mussel (Dreissena polymorpha) can be influenced by riverine velocities and volumetric flows in invaded lake-stream ecosystems. Zebra mussels, which have a planktonic larval form (veliger), disperse rapidly downstream from a source population. Concentrations, dispersal, and body conditions of zebra mussel veligers were studied under different volumetric flow, or discharge, conditions in a coupled lake-stream ecosystem in northern Texas, USA. Veliger densities in lotic environments were strongly related to population dynamics in upstream lentic source populations. A strong exponential decrease in veliger density was observed through a 28-km downstream study reach. Increased water releases from the source reservoir increased veliger flux and dispersal potential, concomitantly increasing veliger flux and decreasing transit time. However, passage through release gates in the dam and increased turbulence in the river during high-discharge events could negatively affect body condition of veligers, and veliger body condition generally decreased from the source population to the farthest downstream site and was lower for veligers during periods of high discharge. Thus increased discharge appears to reduce the proportion of viable veligers because of increased turbulence-induced mortality. Colonization of distant downstream reservoirs can occur if discharge and propagule pressure are sufficient or if interim habitats are suitable for establishment of in-stream populations.  相似文献   

8.
The effect of exposure to copper in seawater (0.005, 0.01, and 0.02 mg/liter) on the development of Mytilus trossulus was examined in the stages of fertilization, blastula, early veliger, veliger, and veliconch. Copper in a concentration of 0.01 and 0.02 mg/liter inhibited the development and growth of the embryos and larvae. At 0.005 mg Cu/liter, the embryos and larvae were capable of adaptation. If M. trossulus embryos and larvae were maintained for 1–2 days in seawater containing 0.01 mg Cu/liter and then transferred to clean water, the consequences were largely dependent on the developmental stage at which the exposure to copper took place. The early developmental stages were more sensitive to the effect of copper than veliger larvae.Original Russian Text Copyright ¢ 2005 by Biologiya Morya, Yaroslavtseva, Sergeeva.  相似文献   

9.
Pond snails (Lymnaea stagnalis) were irradiated with doses of 2760 r or 5520 r in order to induce lethal factors in the germ cells. The descendants of these irradiated snails were individually reared to adulthood, when by self-fertilization they produced egg masses. The occurrence of lethal factors was studied in these egg masses and the stage at which they manifested themselves was determined. No developmental disturbance was found during cleavage, but gastrulation was affected. This indicates that gastrulation in Lymnaea is controlled by the genome of the embryo. The stage at which most genes interfere with development is the early trochophore stage. At later stages the number of genes, which for the first time are active in development, declines. Since the late veliger stage was never affected, all genes essential for development, are apparently functioning before this stage.  相似文献   

10.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

11.
Normal heart rate (HR), and the HR responses to hypoxia and hyperoxia during early heart development in chick embyros have not been studied in detail, particularly in undisturbed embryos within the intact egg. HR was measured in day 3–9 chick embryos at 38 °C using relatively noninvasive impedance cardiography. Embryos were exposed to air (control) and to hypoxic (10% O2) or hyperoxic (100% O2) gas for a 2-h or 4-h period, during which HR was continually monitored. Control (normoxic) HR increased from about 150 beats per min (bpm) on day 3 to about 240 bpm on days 7–9. HR in very early embryos showed a variety of moderate responses to hypoxia (all survived), but as development progressed beyond day 6, hypoxic exposure induced a profound bradycardia that frequently terminated in death before the end of the measurement period. In contrast to the marked developmental changes in hypoxic sensitivity, HR showed little response to hyperoxia throughout development, suggesting no “hypoxic drive” to HR. We speculate that hypoxia has little effect early in development because of the embryo's small absolute O2 demand, but as the embryo grows, hypoxia represents a progressively more severe perturbation. Although general trends were identified, there was considerable variation in both HR and HR responses to ambient O2 changes between individuals of the same developmental stage. Accepted: 16 December 1998  相似文献   

12.
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries.  相似文献   

13.
We studied experimentally the feeding selectivity of larvae of Prochilodus lineatus (Pisces), with particular emphasis on the role of veligers of the exotic bivalve Limnoperna fortunei. Three concentrations of veligers were offered to three developmental stages of P. lineatus. Veliger concentrations were: (1) higher than in the field (“enriched”, 0.09 ind. ml−1), (2) unmodified from field conditions (“normal”, 0.06 ind. ml−1), and (3) lower than in the field (“low”, 0.02 ind. ml−1). Fish developmental stages were protolarvae (approx. 10 days old), mesolarvae (17 days), and metalarvae (25 days). Proportions (in terms of numbers and biomass) and selectivity values were calculated for each prey item evaluated: veligers, small cladocerans + nauplii, medium-sized cladocerans, copepodits, and large cladocerans + copepods. Protolarvae and mesolarvae consumed veligers almost exclusively (88–90%, both in numbers and in biomass) when offered prey enriched in veligers, whereas for metalarvae veligers represented only 16.0% of the food consumed. At lower veliger concentrations, only protolarvae preferred Limnoperna veligers, whereas older fishes switched gradually to crustacean plankton. We conclude that veligers are preferred by the early fish developmental stages, and we speculate that this may be because their slower swimming makes them easier to capture than planktonic crustaceans. However, as fish larvae grow larger, veligers become too small a prey for their energetic needs, and they switch to larger items like cladocerans and copepods. We anticipate that this new and abundant food resource has an important impact on the survival and growth of P. lineatus.  相似文献   

14.
During their reproductive period, females of Crepipatella dilatata deposit their embryos in capsules that they then brood in the pallial cavity until juveniles emerge several weeks later, after passing through a transient veliger “larval” stage. Artificially excapsulated veligers of this species experimentally exposed to a wide range of salinities (5, 10, 15, 20, 25, and 30 psu) for six hours showed reduced activity at salinities of 15 and 20 psu, whereas encapsulated veligers exposed to those same salinities showed no reduction of activity. Artificially excapsulated veligers showed high mortality at salinities of 5 and 10 psu; encapsulated embryonic stages also showed high mortalities at 5 psu and serious sublethal effects at 10 psu in tests excluding maternal protection, showing that encapsulation alone does not provide complete protection from low salinity stress. Natural tidal cycles in the Quempillén River estuary also reduced embryonic survival at salinities of ≤ 10 psu when the capsules were exposed without maternal protection. In contrast, encapsulated embryos protected by their mothers survived well regardless of the salinity to which they were exposed, under both natural and laboratory-simulated estuarine tidal cycles. C. dilatata are able to develop in the estuary only because of maternal protection, since salinity levels in this environment sometimes decline to as low as 7 psu. Successful embryonic development in this estuary reflects the capacity of C. dilatata adults to detect dangerously low salinity levels and then seal themselves off from the environment for up to 50 hrs (O. Chaparro pers. obs.) when the salinity drops below 22.5 psu, allowing salinity to remain above this level within the pallial cavity despite continued salinity declines in the surrounding seawater.  相似文献   

15.
DNA-RNA molecular hybridization experiments were performed to compare sequences of RNA that are present in the unfertilized egg, gastrula, trochophore, early veliger, mid-veliger, and adult with that population that is being synthesized by the midveliger. The conditions of annealing were designed to examine the more common RNA sequences that are complementary to the highly reiterated sequences of the genome. It was found that the RNA of the unfertilized egg competes extensively with RNA sequences that are being synthesized by this relatively late larval stage. These RNA sequences are present at a lower concentration in RNA preparations extracted from unfertilized eggs as compared to later stages. Autoradiographs of 3H-uridine labeled veligers indicate that the pulse-labeled RNA used in these experiments represents that synthesized by a wide variety of larval tissues. These results are discussed with respect to differences in RNA metabolism and determination between regulative and mosaic embryos.  相似文献   

16.
Thermal limits in ectotherms may arise through a mismatch between O2 supply and demand. At higher temperatures, the ability of their cardiac and ventilatory activities to supply O2 becomes insufficient to meet their elevated O2 demand. Consequently, higher levels of O2 in the environment are predicted to enhance heat tolerance, while reductions in O2 are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and report critical upper temperatures in nymphs of the damselfly Calopteryx virgo (Linnaeus, 1758) exposed to different levels of O2. In addition, we explore the potential for a mechanistic link between O2 conditions and thermal plasticity by exposing nymphs to two consecutive extreme heat events, using different levels of O2 in the second exposure. As predicted, hypoxia severely lowered critical temperatures. However, thermal tolerance was not improved under hyperoxia. Damselfly nymphs may be precluded to take advantage of hyperoxia if O2 uptake and delivery is controlled locally near the caudal gills where most of the gas exchange occurs. The same asymmetrical effects of hypoxia and hyperoxia on heat tolerance in terrestrial insects could be similarly explained if tracheal opening and/or ventilation are not centrally regulated. Prior exposure to hypoxia enhanced critical thermal maxima in subsequent heat exposures and hyperoxia negated this hardening effect, indicating potential for oxygen-driven heat hardening in these aquatic insects. Our study provides broad confirmation for oxygen limitation as a key mechanism setting upper thermal limits, pointing to a vital role for heat shock proteins in reducing O2 requirements by slowing down rates of protein denaturation.  相似文献   

17.
The osmoregulatory capacity (OC) was used to study the effects of hypoxia in Penaeus vannamei. Since OC varied with molt stages with a tendency for animals to show a reduced OC before and after ecdysis, only shrimps at stages C-D0 were consequently used. Hyper-OC and hypo-OC, respectively, measured at low salinity and in seawater, were both depressed after 1–2 days exposure to low oxygen tension (PO2) ranging from 4 to 8 kPa. Low PO2 effect was time-dependent. OC recovered fully after 24 h in an O2 saturated medium. OC measurement is confirmed as a convenient tool to monitor the physiological condition and the effect of stress in crustaceans.  相似文献   

18.
In recent years, natural and anthropogenic factors have increased aquatic hypoxia the world over. In most organisms, the cellular response to hypoxia is mediated by the master regulator hypoxia-inducible factor-1 (HIF-1). HIF-1 also plays a critical role in the normal development of the cardiovascular system of vertebrates. We tested the hypothesis that hypoxia exposures which resulted in HIF-1 induction during embryogenesis would be associated with enhanced hypoxia tolerance in subsequent developmental stages. We exposed zebrafish (Danio rerio) embryos to just 4 h of severe hypoxia or total anoxia at 18, 24 and 36 h post-fertilization (hpf). Of these, exposure to hypoxia at 24 and 36 hpf as well as anoxia at 36 hpf activated the HIF-1 cellular pathway. Zebrafish embryos that acutely upregulated the HIF-1 pathway had an increased hypoxia tolerance as larvae. The critical window for hypoxia sensitivity and HIF-1 signalling was 24 hpf. Adult male fish had a lower critical oxygen tension (Pcrit) compared with females. Early induction of HIF-1 correlated directly with an increased proportion of males in the population. We conclude that mounting a HIF-1 response during embryogenesis is associated with long-term impacts on the phenotype of later stages which could influence both individual hypoxia tolerance and population dynamics.  相似文献   

19.
Greater oxygen availability has been hypothesized to be important in allowing the evolution of larger invertebrates during the Earth’s history, and across aquatic environments. We tested for evolutionary and developmental responses of adult body size of Drosophila melanogaster to hypoxia and hyperoxia. Individually reared flies were smaller in hypoxia, but hyperoxia had no effect. In each of three oxygen treatments (hypoxia, normoxia or hyperoxia) we reared three replicate lines of flies for seven generations, followed by four generations in normoxia. In hypoxia, responses were due primarily to developmental plasticity, as average body size fell in one generation and returned to control values after one to two generations of normoxia. In hyperoxia, flies evolved larger body sizes. Maximal fly mass was reached during the first generation of return from hyperoxia to normoxia. Our results suggest that higher oxygen levels could cause invertebrate species to evolve larger average sizes, rather than simply permitting evolution of giant species.  相似文献   

20.
The cardiovascular system performs key physiological functions even as it develops and grows. The ontogeny of cardiac physiology was studied throughout embryonic and larval development in the red swamp crayfish Procambarus clarkii using videomicroscopic dimensional analysis. The heart begins to contract by day 13 of development (at 25°C, 20 kPa O2). Prior to eclosion, heart rate (ƒH) decreases significantly. Previous data suggests that the decrease in cardiac parameters prior to hatching may be due to an oxygen limitation of the embryo. Throughout development, metabolizing mass and embryonic oxygen consumption primarily increased while egg surface area remains constant. The limited area for gas exchange of the egg membrane, in combination with the increasing oxygen demand of the embryo could result in an inadequate diffusive supply of oxygen to developing tissues. To determine if the decrease in cardiac function was the result of an internal hypoxia experienced during late embryonic development, early and late stage embryos were exposed to hyperoxic water (PO2 =40 kPa O2). The ƒH in late stage embryos increased significantly over control values when exposed to hyperoxic water suggesting that the suppression in cardiac function observed in late stage embryos is likely due to a limited oxygen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号