首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sensitive ultra performance liquid chromatography–mass spectrometry method has been developed and validated for the quantification of taxifolin in rat plasma. Following liquid/liquid extraction by ethyl acetate, the analytes were separated on a Sunfire? (2.1 mm × 50 mm, 3.5 μm) column and analyzed in the selected ion recording with a negative electrospray ionization mode. The method was linear over the concentration range of 6–6750 ng/mL. Intra- and inter-day precisions were all within 8% and accuracy ranged from 92.9% to 105.1%. The lower limit of quantification was 6 ng/mL. The present method was successfully applied to the estimation of the pharmacokinetic parameters of taxifolin following intravenous and oral administration to rats. The absolute bioavailability of taxifolin was 0.17% in rat.  相似文献   

2.
A sensitive and specific method using ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed for the determination of levetiracetam (LEV) in plasma of neonates. A plasma aliquot of 50 μl was deproteinized by addition of 500 μl methanol which contained 5 μg/ml UCB 17025 as an internal standard. After centrifugation, 50 μl of supernatant was diluted with 1000 μl of 0.1% formic acid–10 mM ammonium formate in water (pH 3.5) (mobile phase solution A) and 2 μl was injected onto the UPLC-system. Compounds were separated on a Acquity UPLC BEH C18 2.1 mm × 100 mm column using gradient elution with mobile phase solution A and 0.1% formic acid in methanol (mobile phase solution B) with a flow rate of 0.4 ml/min and a total runtime of 4.0 min. LEV and the internal standard were detected using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay allowed quantification of LEV plasma concentrations in the range from 0.5 μg/ml to 150 μg/ml. Inter-assay inaccuracy was within ±2.7% and inter-assay precision was less than 4.5%. Matrix effects were minor: the recovery of LEV was between 97.7% and 100%. The developed method required minimal sample preparation and less plasma sample volume compared to earlier published LC–MS/MS methods. The method was successfully applied in a clinical pharmacokinetic study in which neonates received intravenous administrations of LEV for the treatment of neonatal seizures.  相似文献   

3.
Diacerein and aceclofenac are prescribed for reducing the symptoms associated with osteoarthritis. We present a simple HPLC method with UV detection for simultaneous determination of rhein (the immediate metabolite of diacerein) and aceclofenac from human plasma samples. Sample preparation was accomplished through liquid–liquid extraction with ethyl acetate and chromatographic separation was performed on a reversed-phase ODS column. Mobile phase consisted of a mixture of acetate buffer and acetonitrile run under gradient at flow rate of 1.0 ml/min. Wavelength was set at 258 nm. The method was validated for linearity, accuracy, precision and stability. The calibration was linear over the range of 0.1–7.0 μg/ml for rhein and 0.5–20 μg/ml for aceclofenac using 500 μl plasma samples. Extraction recoveries were 85% for rhein and 70% for aceclofenac. The method can easily be adopted for high-throughput clinical and pharmacokinetic studies of above two-drug fixed dose combination formulations.  相似文献   

4.
A novel precolumn derivatization reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV–vis detection for the quantitative determination of total concentration of asiatic acid (AA) in beagle dog plasma is described. AA was extracted with n-hexane-dichloromethane-2-propanol (20:10:1, v/v/v) from plasma, which had been hydrolyzed by acid and derivatized with p-Toluidine. Chromatographic separation was achieved on a C18 column using gradient elution in a water–methanol system. Detection was set at UV wavelength of 248 nm. A calibration curve ranging from 0.01 to 1.5 μg/mL was shown to be linear, and the lower limit of quantification (LLOQ) was 0.01 μg/mL. The intra- and inter-day precisions which were determined by three different concentrations (0.05, 0.2 and 0.8 μg/mL) ranged from 4.4% to 13.1% and 4.6% to 14.2%, respectively. Mean extraction recoveries were no less than 65% for AA and ursolic acid (IS). Plasma samples containing asiatic acid were stable for 30 days at ?20 °C. The method was successfully applied to a pharmacokinetic study in beagle dogs after oral administration of Centella asiatica extract, and the main pharmacokinetic parameters obtained were: T1/2, 4.29 h; Tmax, 2.70 h; Cmax, 0.74 μg/mL; AUC0–t and AUC0–∞, 3.74 and 3.82 μg h/mL, respectively.  相似文献   

5.
A kinetic study of atosiban was conducted following repeated intravenous administration in Wistar rats. Sample analysis was performed using liquid chromatography–tandem mass spectrometry (LC–MS/MS) following full validation of an in-house method. Eptifibatide, a cyclic peptide, was used as an internal standard (IS). The analyte and internal standard were extracted using solid phase extraction (SPE) method. Chromatographic separation was carried out using an ACE C18 5 μm 50 mm × 4.6 mm column with gradient elution. Mass spectrometric detection was performed using TSQ Quantum ultra AM. The lower limit of quantification was 0.01 μg/ml when 100 μl rat plasma was used. Plasma concentrations of atosiban were measured at 0 (pre-dose), 2, 15, 30, 45, 60, 120 min at the dosage levels of 0.125 mg/kg (low dose), 0.250 mg/kg (mid dose), and 0.500 mg/kg (high dose), respectively. Atosiban plasma concentration measured at Day 1 showed mean peak atosiban concentration (Cmax) 0.40, 0.57, 1.95 μg/ml for low, mid and high dose treated animals and mean peak concentration on Day 28 was 0.41, 0.88, 1.31 μg/ml on Day 28 for low, mid and high dose treated animals.  相似文献   

6.
We herein describe the development of an LC–MS method for simultaneous determination of astilbin and 3′-O-methylastilbin in rat plasma. A simple liquid–liquid extraction procedure was followed by injection of the extracts on to a Shim-pack C18 column (150 mm × 2.0 mm I.D., 5 μm) with gradient elution and detection in negative ionization mode. Initially, the method was validated regarding linearity, accuracy and precision. The correlation coefficients of all the calibration curves showed good linearity (r > 0.999) within test ranges, and the relative deviation was less than 10% for intra- and inter-day assays. Besides, this method was also validated for its stability, extraction efficiency, matrix effect and so on. Finally, this proposed method was successfully applied to rat pharmacokinetic study and yielded the most comprehensive data on systemic exposure of them to date.  相似文献   

7.
A rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of picamilon concentration in human plasma. Picamilon was extracted from human plasma by protein precipitation. High performance liquid chromatography separation was performed on a Venusil ASB C18 column with a mobile phase consisting of methanol ?10 mM ammonium acetate–formic acid (55:45:01, v/v/v) at a flow rate of 0.65 ml/min. Acquisition of mass spectrometric data was performed in selected reaction monitoring mode, using the transitions of m/z 209.0  m/z (78.0 + 106.0) for picamilon and m/z 152.0  m/z (93.0 + 110.0) for paracetamol (internal standard). The method was linear in the concentration range of 1.00–5000 ng/ml for the analyte. The lower limit of quantification was 1.00 ng/ml. The intra- and inter-assay precision were below 13.5%, and the accuracy was between 99.6% and 101.6%. The method was successfully applied to characterize the pharmacokinetic profiles of picamilon in healthy volunteers. This validated LC–MS/MS method was selective and rapid, and is suitable for the pharmacokinetic study of picamilon in humans.  相似文献   

8.
A high performance liquid chromatographic method for determination of moxifloxacin in human plasma was developed. The method involved deproteinisation of the sample with perchloric acid and analysis of the supernatant using a reversed-phase C18 column (150 mm) and fluorescence detection at an excitation wavelength of 290 nm and an emission wavelength of 460 nm. The assay was specific for moxifloxacin and linear from 0.125 to 10.0 μg/ml. The relative standard deviation of intra- and inter-day assays was lower than 10%. The average recovery of moxifloxacin from plasma was 101%. Due to its simplicity, the assay can be used for pharmacokinetic studies of moxifloxacin.  相似文献   

9.
A rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method was developed and validated for determination of cymipristone in human plasma. Mifepristone was used as the internal standard (IS). Plasma samples were deproteinized using methanol. The compounds were separated on a ZORBAX SB C18 column (50 mm × 2.1 mm i.d., dp 1.8 μm) with gradient elution at a flow-rate of 0.3 ml/min. The mobile phase consisted of 10 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadruple tandem mass spectrometer by selective reaction monitoring (SRM) mode via electrospray ionization. Target ions were monitored at [M+H]+ m/z 498  416 and 430  372 in positive electrospray ionization (ESI) mode for cymipristone and IS, respectively. Linearity was established for the range of concentrations 0.5–100 ng/ml with a coefficient correlation (r) of 0.9996. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.5 ng/ml. The validated method was successfully applied to study the pharmacokinetics of cymipristone in healthy Chinese female subjects.  相似文献   

10.
Vincristine is a natural vinca alkaloid widely used in paediatric cancer treatment. Vincristine pharmacokinetics has been already studied, but few data are available in paediatric populations. A sensitive and specific liquid chromatography–tandem mass spectrometry (LC/MS/MS) method was developed for the quantification of vincristine in plasma in order to investigate pharmacokinetics in a paediatric population. Two hundred microliters of plasma was added to vinblastine, used as internal standard. Chromatographic separation was achieved on a C8 HPLC column (Phenomenex Luna 50 mm × 2.0 mm, 3.0 μm) with a mobile phase gradient at a flow rate of 0.2 ml/min. Quantification was performed using the transition of 825.4  765.4 (m/z) for vincristine and 811.4  751.4 (m/z) for vinblastine. Chromatographic separation was achieved in 8 min. The limit of quantification was 0.25 ng/ml with a precision of 10.2% and an accuracy of 99.6%. The calibration curve was linear up to 50.0 ng/ml. Intra-day precision and accuracy ranged from 6.3% to 10% and from 91.9% to 100.8%, respectively. Inter-assay precision and accuracy ranged from 3.8% to 9.7% and from 93.5% to 100.5%, respectively. No significant matrix effect was observed for vincristine. A rapid, specific and sensitive LC/MS/MS method for quantification of vincristine in human plasma was developed and is now successfully applied for pharmacokinetic studies in paediatric patients.  相似文献   

11.
A method based on the on-line turbulent-flow chromatography and fast high-performance liquid chromatography/mass spectrometry (TFC–LC/MS) was developed for sensitive and high throughput pharmacokinetic study of traditional Chinese medicines (TCMs). In this method, an on-line extraction column (Waters Oasis HLB) and a fast HPLC column with sub-2 μm particle size (Agilent Zorbax StableBond-C18, 4.6 mm × 50 mm, 1.8 μm) in a column-switching set-up were utilized. HLB is a reversed-phase extraction column with hydrophilic–lipophilic balanced copolymer (2.1 mm × 20 mm, 25 μm particle size), which will exhibit some turbulent-flow properties at a high-flow rate. The method combines the speed and robustness of turbulent-flow extraction and the sensitivity and separation efficiency of fast HPLC–MS to analyze multiple and trace constituents of TCMs in plasma matrix. This method was successfully applied for pharmacokinetic study of verticine, verticinone and isoverticine, the chemical markers of Fritillaria thunbergii, after oral administration of total steroidal alkaloids extract of F. thunbergii to rats. Each plasma sample was analyzed within 7 min. The method demonstrated good linearity (R > 0.999) ranged from 0.505 to 96.0 ng/mL with satisfactory accuracy and precision, and the lower limit of quantifications of verticine, verticinone and isoverticine were estimated to be 0.120, 0.595 and 0.505 ng/mL, respectively. These results indicate that the proposed method is fast, sensitive, and feasible for pharmacokinetic study of TCMs.  相似文献   

12.
A rapid high-performance liquid chromatography–mass spectrometry (HPLC–MS) method was developed and validated for simultaneous quantification of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma after oral administration of ginger oleoresin. Plasma samples extracted with a liquid–liquid extraction procedure were separated on an Agilent Zorbax StableBond-C18 column (4.6 mm × 50 mm, 1.8 μm) and detected by MS with electrospray ionization interface in positive selective ion monitoring (SIM) mode. Calibration curves (1/x2 weighted) offered satisfactory linearity (r2 > 0.995) in a wide linear range (0.0104–13.0 μg/mL for 6-gingerol, 0.00357–4.46 μg/mL for 8-gingerol, 0.00920–11.5 μg/mL for 10-gingerol and 0.00738–9.22 μg/mL for 6-shogaol). The lower limit of quantification (LLOQ) was in a range of 3.57–10.4 ng/mL. The analytes and internal standard can be baseline separated within 6 min. Inter- and intra-day assay variation was less than 15%. This developed method was successfully applied to pharmacokinetic studies of ginger oleoresin after oral administration to rats. Glucuronide of 6-gingerol was determined after β-glucuronidase hydrolysis for more information, and the intestinal glucuronidation was further confirmed by comparison of plasma samples of hepatic portal vein and femoral vein.  相似文献   

13.
A simple and sensitive high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method has been developed and validated for simultaneous quantification of five local anesthetics in human plasma: procaine, lidocaine, ropivacaine, tetracaine and bupivacaine. In an ice-water bath, 500 μL plasma sample, containing 100 μg/mL neostigmine methylsulfate as anticholinesterase, was spiked with carbamazepine as internal standard and alkalized by sodium hydroxide. Liquid–liquid extraction with ethyl ether was used for plasma sample preparation. The chromatographic separation was achieved on a Kromosil ODS C18 column with a mobile phase consisting of 30 mM potassium dihydrogen phosphate buffer (0.16% triethylamine, pH adjusted to 4.9 with phosphoric acid) and acetonitrile (63/37, v/v). The detection was performed simultaneously at wavelengths of 210 and 290 nm. The chromatographic analysis time was 13 min per sample. The calibration curves of all five analytes were linear between 0.05 and 5.0 μg/mL (r2  0.998). Precision ranged from 1.4% to 7.9% and accuracy was between 91.7% and 106.5%. The validated method is applicable for simultaneous determination of procaine, lidocaine, ropivacaine, tetracaine and bupivacaine for therapeutic drug monitoring and pharmacokinetic study.  相似文献   

14.
A rapid and sensitive bioassay based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the simultaneous determination of four isomeric escin saponins (escin Ia, escin Ib, isoescin Ia and isoescin Ib) in human plasma has been developed and validated. Sample preparation of plasma after addition of telmisartan as internal standard (I.S.) involved solid-phase extraction (SPE) on C18 cartridges. Separation was based on reversed phase chromatography using gradient elution with methanol–acetonitrile (50:50, v/v) and 10 mM ammonium acetate solution (pH 6.8). MS/MS detection in the positive ion mode used multiple reaction monitoring of the transition at m/z 1113.8  807.6. Stability issues with the four saponins required the addition of formic acid to plasma samples prior to storage at ?80 °C and analysis within 30 days. The method was linear at concentrations up to 10 ng/mL with correlation coefficients > 0.996 for all analytes. The lower limit of quantitation (LLOQ) for all four saponins was 33 pg/mL. Intra- and inter-day precisions (as relative standard deviation) were all <15% and accuracies (as relative error) in the range ?5.3% to 6.1%. The method was successfully applied to a pharmacokinetic study of escins in healthy volunteers after oral administration of sodium aescinate tablets containing 60 mg escin saponins.  相似文献   

15.
A sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for the first time for the estimation of Tenacissoside A in the rats’ plasma, which is the major active constituent in Marsdenia tenacissima. Tenacissoside A was extracted from the rats’ plasma by using liquid–liquid extraction (LLE), medroxyprogesterone acetate was used as the internal standard. An Alltech C18 column (250 mm × 4.6 mm, 5 μm) was used to provide chromatographic separation by detection with mass spectrometry operating in selected ion monitoring (SIM) mode. The method was validated over the concentration range of 1–250 ng/mL for Tenacissoside A. The precisions within and between-batch (CV%) were both less than 15% and accuracy ranged from 90 to 102%. The lower limit of quantification was 1 ng/mL and extraction recovery was 88.3% on average. The validated method was used to study the pharmacokinetic profile of Tenacissoside A in rat after administration.  相似文献   

16.
Gambogic acid (GA), a promising anticancer candidate, is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi. The major circulating metabolite of GA in human, 10-hydroxygambogic acid (10-OHGA), was identified by comparison of the retention time and mass spectra with those of reference standard using liquid chromatography–tandem mass spectrometry. The reference standard of 10-OHGA was isolated from bile samples of rats after intravenous injection of GA injection, and its structure was confirmed by NMR. Then, a selective and sensitive method was developed for the quantitative determination of this metabolite in human plasma. After liquid–liquid extraction by ethyl acetate, the analyte and the internal standard were separated on a Sepax HPC18 column (100 mm × 2.1 mm i.d., 3.0 μm) with a mobile phase of 10 mM ammonium acetate water solution containing 0.1% formic acid–acetonitrile (20:80, v/v). The detection was performed on a single quadrupole mass spectrometer equipped with electrospray ionization (ESI) source. The calibration curve was linear over the range of 3–2000 ng/mL for 10-OHGA. The developed quantification method can now be used for the pharmacokinetic and pharmacological studies of 10-OHGA after intravenous infusion of GA injection in human.  相似文献   

17.
Root cultures of Silybum marianum (L.) Gaertn. (Asteraceae) were established from in vitro germinated sterile plantlets. The cultures grew in hormone-free Murashige and Skoog medium. The flavonolignan content in the cultured roots was determined by HPLC using 30% acetonitrile in acidified water (0.5% phosphoric acid). The major flavonolignans produced by the cultured roots were silychristin (74.2 μg g?1 fresh weight (FW)) and silydianin (8.1 μg g?1 FW). The flavonolignan precursor taxifolin was also detected in the cultured roots (40.8 μg g?1 FW). Addition of methyl jasmonate to 7-days-old root cultures for 48 h increased the content of the produced flavonolignans and taxifolin to approximately 300% of the control cultures. Methyl jasmonate also enhanced about sixfold the accumulation of a compound identified as 3,3′,5,5′,7-pentahydroxyflavanone.  相似文献   

18.
BackgroundIn recent years the incidence of candidemia caused by non-albicans Candida species has been increasing. Two cryptic species have been described within the Candida glabrata complex, Candida nivariensis and Candida bracarensis, which may be troublesome in laboratory identification and have lower susceptibility to fluconazole.AimsTo describe the first isolation of C. nivariensis in the Iberian Peninsula from a patient suffering from a catheter-related fungemia.Case reportAn 81-year-old man was hospitalized for surgical treatment of an intestinal fistula that was associated to a severe malnutrition. Cultures of the patient's central venous catheter tip and blood yielded white colonies in BD CHROMagar Candida® medium, which could not be identified by conventional microbiological methods. Although intravenous fluconazole was administered, blood cultures continued being positive 5 days later. The MIC values of the isolate were as follows: 1 μg/ml for amphotericin B, 0.015 μg/ml for anidulafungin, 0.125 μg/ml for caspofungin, 0.015 μg/ml for micafungin, 4 μg/ml for fluconazole, 0.25 μg/ml for itraconazole, 0.25 μg/ml for posaconazole, and 0.03 μg/ml for voriconazole. Antifungal treatment was changed to intravenous caspofungin for 2 weeks. The intestinal fistula was surgically treated. There was no evidence of relapse during the following month, and the patient was discharged. The isolate was identified as C. nivariensis based on DNA sequencing of the ITS regions of rRNA.ConclusionsC. nivariensis should be regarded as an emerging pathogen which requires molecular methods for a definitive identification. Our patient was successfully treated with caspofungin.  相似文献   

19.
A selective and sensitive liquid chromatography (LC)–atmospheric pressure chemical ionisation (APCI)–mass spectroscopic (MS) assay of canrenone has been developed and validated employing Dried Blood Spots (DBS) as the sample collection medium. DBS samples were prepared by applying 30 μl of spiked whole blood onto Guthrie cards. A 6 mm disc was punched from the each DBS and extracted with 2 ml of methanolic solution of 17α-methyltestosterone (Internal Standard). The methanolic extract was evaporated to dryness and reconstituted in acetonitrile:water (1:9, v/v). The reconstituted solution was further subjected to solid phase extraction using HLB cartridges. Chromatographic separation was achieved using Waters Sunfire C18 reversed-phase column using isocratic elution, followed by a high organic wash to clear late eluting/highly retained components. The mobile phase consisted of methanol:water (60:40, v/v) pumped at a flow rate of 0.3 ml/min. LC–APCI–MS detection was performed in the selected-ion monitoring (SIM) mode using target ions at m/z 341.1 and 303.3 for canrenone and internal standard respectively. The selectivity of the method was established by analysing DBS samples from 6 different sources (individuals). The calibration curve for canrenone was found to be linear over 25–1000 ng/ml (r > 0.994). Accuracy (% RE) and precision (% CV) values for within and between day were <20% at the lower limit of quantification (LLQC) and <15% at all other concentrations tested. The LLOQ of the method was validated at 25 ng/ml. Clinical validation of the method was achieved by employing the validated method for analysis of 160 DBS samples from 37 neonatal and paediatric patients.  相似文献   

20.
We present a simple, rapid, and sensitive liquid chromatography (LC)–tandem mass spectrometry (MS/MS) method for the simultaneous quantification of rosiglitazone and its two major metabolites via CYP2C8/9, N-desmethyl and p-hydroxy rosiglitazone, in human plasma. The procedure was developed and validated using rosiglitazone-d3 as the internal standard. Plasma samples (0.1 ml) were prepared using a simple deproteinization procedure with 0.2 ml of acetonitrile containing 40 ng/ml of rosiglitazone-d3. Chromatographic separation was carried out on a Luna C18 column (100 mm × 2.0 mm, 3-μm particle size) using an isocratic mobile phase consisting of a 60:40 (v/v) mixture of acetonitrile and 0.1% formic acid(aq). Each sample was run at 0.2 ml/min for a total run time of 2.5 min per sample. Detection and quantification were performed using a mass spectrometer in selected reaction-monitoring mode with positive electrospray ionization at m/z 358.1  135.1 for rosiglitazone, m/z 344.2  121.1 for N-desmethyl rosiglitazone, m/z 374.1  151.1 for p-hydroxy rosiglitazone, and m/z 361.1  138.1 for rosiglitazone-d3. The linear ranges of concentration for rosiglitazone, N-desmethyl rosiglitazone, and p-hydroxy rosiglitazone were 1–500, 1–150, and 1–25 ng/ml, respectively, with a lower limit of quantification of 1 ng/ml for all analytes. The coefficient of variation for assay precision was less than 14.4%, and the accuracy was 93.3–112.3%. No relevant cross-talk and matrix effect were observed. This method was successfully applied to a pharmacokinetic study after oral administration of a 4-mg rosiglitazone tablet to healthy male Korean volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号