首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Currently, there is no biochemical test to assist in the behavioral diagnosis of autism. We observed that levels of phosphatidylethanolamine (PE) were decreased while phosphatidylserine (PS) were increased in the erythrocyte membranes of children with autism as compared to their non-autistic developmentally normal siblings. A new method using Trinitrobenezene sulfonic acid (TNBS) for the quantification of PE and PS (amino-glycerophospholipids, i.e., AGP) in the plasma of children was developed and standardized. Wavelength scans of TNBS-PE and TNBS-PS complexes gave two peaks at 320 nm and 410 nm. When varying concentrations of PS and PE were used, a linear regression line was observed at 410 nm with TNBS. Using this assay, the levels of AGP were found to be significantly increased in the plasma of children with autism as compared to their non-autistic normal siblings. It is proposed that plasma AGP levels may function as a potential diagnostic marker for autism.  相似文献   

2.
We compared the compositions of fatty acids including n-3, n-6 polyunsaturated fatty acids, trans- and cis-monounsaturated fatty acids, and saturated fatty acids in the red blood cell membranes of 40 children with autism (20 with early onset autism and 20 with developmental regression) and age-matched, 20 typically developing controls and 20 subjects with non-autistic developmental disabilities. The main findings include increased levels of eicosenoic acid (20:1n9) and erucic acid (22:1n9) in autistic subjects with developmental regression when compared with typically developing controls. In addition, an increase in 20:2n6 and a decrease in 16:1n7t were observed in children with clinical regression compared to those with early onset autism. Our results do not provide strong evidence for the hypothesis that abnormal fatty acid metabolism plays a role in the pathogenesis of autism spectrum disorder, although they suggest some metabolic or dietary abnormalities in the regressive form of autism.  相似文献   

3.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

4.
Chauhan A  Chauhan V  Brown WT  Cohen I 《Life sciences》2004,75(21):2539-2549
Autism is a neurological disorder of childhood with poorly understood etiology and pathology. We compared lipid peroxidation status in the plasma of children with autism, and their developmentally normal non-autistic siblings by quantifying the levels of malonyldialdehyde, an end product of fatty acid oxidation. Lipid peroxidation was found to be elevated in autism indicating that oxidative stress is increased in this disease. Levels of major antioxidant proteins namely, transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein) in the serum, were significantly reduced in autistic children as compared to their developmentally normal non-autistic siblings. A striking correlation was observed between reduced levels of these proteins and loss of previously acquired language skills in children with autism. These results indicate altered regulation of transferrin and ceruloplasmin in autistic children who lose acquired language skills. It is suggested that such changes may lead to abnormal iron and copper metabolism in autism, and that increased oxidative stress may have pathological role in autism.  相似文献   

5.
Essential fatty acids and phospholipase A2 in autistic spectrum disorders   总被引:2,自引:0,他引:2  
A health questionnaire based on parental observations of clinical signs of fatty acid deficiency (FAD) showed that patients with autism and Asperger's syndrome (ASP) had significantly higher FAD scores (6.34+/-4.37 and 7.64+/-6.20, respectively) compared to controls (1.78+/-1.68). Patients with regressive autism had significantly higher percentages of 18:0,18:2n-6 and total saturates in their RBC membranes compared to controls, while 24:0, 22:5n-6, 24:1 and the 20:4n-6/20:5n-3 ratio were significantly higher in both regressive autism and ASP groups compared to controls. By comparison, the 18:1n-9 and 20:4n-6 values were significantly lower in patients with regressive autism compared to controls while 22:5n-3, total n-3 and total dimethyl acetals were significantly lower in both regressive autism and ASP groups compared to controls. Storage of RBC at -20 degrees C for 6 weeks resulted in significant reductions in highly unsaturated fatty acid levels in polar lipids of patients with regressive autism, compared to patients with classical autism or ASP, or controls. Patients diagnosed with both autism and ASP showed significantly increased levels of EPA ( approximately 200%) and DHA ( approximately 40%), and significantly reduced levels of ARA ( approximately 20%), 20:3n-6 and ARA/EPA ratio in their RBC polar lipids, when supplemented with EPA-rich fish oils, compared to controls and non-supplemented patients with autism. Patients with both regressive autism and classical autism/Asperger's syndrome had significantly higher concentrations of RBC type IV phospholipase A2 compared to controls. However, patients with autism/ASP, who had taken EPA supplements, had significantly reduced PLA2 concentrations compared to unsupplemented patients with classical autism or ASP.  相似文献   

6.
The ceroid lipofuscinoses are inherited lysosomal diseases of children characterized by a fluorescent lipopigment stored in a variety of tissues. Defects in lipid metabolism or the control of lipid peroxidation have been postulated to explain their pathogenesis. In the present study, lipopigment was isolated from the liver of sheep affected with ceroid lipofuscinosis. It was 70% protein, the rest being mainly lipids. These were only one-sixth as fluorescent as total liver lipids, but contained a number of fluorophors. None were major components of the lipopigment or the postulated fluorescent product of lipid peroxidation. Lipopigment lipids included the lysosomal marker bis(monoacylglycero)phosphate that contained 42.9% linoleate and 16.5% linolenate. Lipopigment neutral lipids were dolichol, dolichyl esters, ubiquinone, free fatty acids, and cholesterol, indicative of a lysosomal origin of the lipopigment. Phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine were present in proportions and with fatty acid profiles typical of lysosomes. No differences were found between the lipids of total control and affected livers, nor the fatty acid profiles of their phosphatidylcholine, phosphatidylethanolamine, or triglycerides. It is concluded that ovine ceroid lipofuscinosis is not a lipidosis, nor does the lipopigment arise from the abnormal peroxidation of lipids. Strong similarities between the lipopigment and the age pigment lipofuscin were noted.  相似文献   

7.
Two distinct pathways for the incorporation of exogenous fatty acids into phospholipids were identified in Escherichia coli. The predominant route originates with the activation of fatty acids by acyl-CoA synthetase followed by the distribution of the acyl moieties into all phospholipid classes via the sn-glycerol-3-phosphate acyltransferase reaction. This pathway was blocked in mutants (fadD) lacking acyl-CoA synthetase activity. In fadD strains, exogenous fatty acids were introduced exclusively into the 1-position of phosphatidylethanolamine. This secondary route is related to 1-position fatty acid turnover in phosphatidylethanolamine and proceeds via the acyl-acyl carrier protein synthetase/2-acylglycerophosphoethanolamine acyltransferase system. The turnover pathway exhibited a preference for saturated fatty acids, whereas the acyl-CoA synthetase-dependent pathway was less discriminating. Both pathways were inhibited in mutants (fadL) lacking the fatty acid permease, demonstrating that the fadL gene product translocates exogenous fatty acids to an intracellular pool accessible to both synthetases. These data demonstrate that acyl-CoA synthetase is not required for fatty acid transport in E. coli and that the metabolism of exogenous fatty acids is segregated from the metabolism of acyl-acyl carrier proteins derived from fatty acid biosynthesis.  相似文献   

8.
Abstract: This study focuses on the potential involvement of carnitine palmitoyltransferase (CRT) on the phospholipid and triglyceride fatty acid turnover in neurons. This category of enzymes, which has been identified in several rat brain tissues, is well known for its role in modulating cellular fatty acid oxidation. Neuronal cell cultures from rat brain cortex incorporated radioactive palmitate or oleate into phospholipids and triglycerides. The largest fraction of radioactive fatty acids was recovered in phosphatidyl- choline followed by triglycerides and, to a lesser extent, phosphatidylethanolamine. CPT activity measured in neuronal lysates obtained from neurons treated with 40 μ M 2-tetradecylglycidic acid (TDGA) was almost completely abolished. Furthermore, between 2 and 10 μ M TDGA CPT activity dropped more rapidly than between 10 and 40 μ M. When the cells were pretreated with TDGA, the incorporation process of either radioactive fatty acid into triglycerides was dose-dependently suppressed. Radioactive fatty acid incorporation into phosphatidylcholine was significantly decreased in cells treated with TDGA. In contrast, phosphatidylethanolamine reacylation was essentially not affected by the CpT inhibitor. Similar results on the fatty acid incorporation into triglycerides and phospholipids were observed with neurons treated with palmitoyl- dl - aminocarnitine (PAC), a reversible CPT inhibitor, which does not consume free CoA. These effects do not seem to be the result of an inhibitory activity toward one of the steps involved in the acylation-deacylation process of triglycerides or phospholipids, as cellular lysates from TDGA-treated cells or lysates containing PAC incorporated radioactive fatty acids at rates comparable to controls. Our results suggest that CRT may be an important partner in the pathway of phospholipid and triglyceride fatty acid turnover in neurons.  相似文献   

9.
Previous studies have shown that aldosterone treatment of amphibian epithelial cells results not only in stimulation of Na(+) absorption but also in changes in phospholipid composition which are necessary for the mineralocorticoid action of aldosterone. The present study was designed to investigate the effect of aldosterone on phospholipids of mammalian epithelia. Phospholipid and fatty acid composition was examined in colonic epithelium (mineralocorticoid target tissue) and thymus (non-mineralocorticoid but glucocorticoid target tissue) of rats which had received aldosterone or vehicle by a miniosmotic pump for 7 days. Aldosterone increased the mass of colonic phospholipids relative to cellular proteins with concomitant changes in the percentage distribution of fatty acids, whereas the relative distribution of membrane phospholipds was not changed. Phosphatidylcholine increased the content of polyunsaturated and decreased that of monounsaturated fatty acids, which predominantly reflected the accretion of arachidonic and a decrease in oleic and palmitoleic acids. Within the phosphatidylethanolamine subclass, pretreatment of rats with aldosterone decreased the content of monounsaturated fatty acids (predominantly oleic and palmitoleic acid) and of n-3 fatty acids, and increased the content of saturated fatty acids (palmitic acid). The saturated-to-nonsaturated fatty acid ratio also significantly increased after aldosterone treatment. No changes in thymic phospholipids were seen. The results are consistent with the contention that aldosterone specifically modulates phospholipid concentration and metabolism in mineralocorticoid target tissue. The changes in phospholipid content and its fatty acid composition during the fully developed effect of aldosterone may reflect a physiologically important phenomenon with long-term consequences for membrane structure and function.  相似文献   

10.
With the ultimate aim of targeting cancer drugs to malignant tissues, liposomes containing polymeric phosphatidylethanolamine and a fatty acid were prepared. For this purpose diacetylenic phosphatidylethanolamine (DAPE), a phosphatidylethanolamine containing diacetylene, was synthesized. Liposomes containing DAPE, fatty acid, and either phosphatidylethanolamine (PE) or phosphatidylethanolamine-beta-oleoyl-gamma-palmitoyl (POPE) were then prepared. Polymerization of DAPE was effected by UV illumination. The polymeric liposomes so obtained were stable at physiological pH but became leaky below pH 6.5. Of various compositions studied, the greatest pH-sensitivity was found with liposomes composed of 35 mol% DAPE, 35 mol% POPE, and 30 mol% saturated fatty acid. The presence of blood plasma albumin decreased vesicle stability while apolipoprotein A-I (apo A-I) had the opposite effect and plasma as a whole had a slightly stabilizing effect.  相似文献   

11.
Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4-10 years) and Group B (adults, ages 14-39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p<0.05), of complex I in the frontal cortex (p<0.05), and of complexes II (p<0.01), III (p<0.01), and V (p<0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood.  相似文献   

12.
13.
Cell suspension cultures of Catharanthus roseus were used to study the effect of temperature on plant cell lipids and indole alkaloid accumulation. Lowering the cultivation temperature increased the total fatty acid content per cell dry weight relative to that at higher temperatures, mainly because of increased accumulation of unsaturated C18 acids. In addition, an increase in the relative proportion of phosphatidylcholine and phosphatidylethanolamine was observed. Within individual lipids, the degree of unsaturation was increased and the mean fatty acid chain length decreased with reducing temperature. These changes may be interpreted as modifying the cell membrane fluidity to keep it optimal for growth and metabolism at each temperature. In spite of membrane modifications, the indole alkaloid content of the cells or the medium was not affected by temperature change.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - PG phosphatidylglycerol - CL cardiolipin - DGD digalactosyldiglyceride - MGD monogalactosyldiglyceride - NL neutral lipids - DU degree of fatty acid unsaturation - TLC thin-layer chromatography - FID-GC flame ionisation detector-gas chromatography - dw dry weight  相似文献   

14.
Our previous study demonstrated that levels of dihomo-gamma-linolenic acid (DGLA) and arachidonic acid in serum total lipids decreased in association with increased plasma levels of prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) in patients with insulin-dependent diabetes mellitus. In this study, 11 children with insulin-dependent diabetes mellitus completed a double-blind, placebo-controlled study to assess the effect of dietary supplementation with gamma-linolenic acid (GLA) on serum essential fatty acid and plasma PGE2 and PGF2 alpha levels. GLA was given as the seed oil from the evening primrose (EPO) and all patients received either EPO capsules (containing 45 mg of GLA and 360 mg of linoleic acid) or indistinguishable placebo capsules for 8 months. Initially patients took 2 capsules daily for 4 months then 4 capsules daily for a further 4 months. All patients were assessed at the start of the study, after 4 months and at the end of the study, by measuring serum essential fatty acid and plasma PGE2 and PGF2 alpha levels. After administration of 4 capsules daily the DGLA levels increased and PGE2 levels decreased significantly (p less than 0.01) in the EPO compared with the placebo group. Neither fatty acid nor PGE2 and PGF2 alpha levels were altered by administration of 2 EPO capsules daily. This suggests that the altered essential fatty acid and PG metabolism in diabetes may be reversed by direct GLA supplementation.  相似文献   

15.
In previous studies an apparent transfer of (14)C-labeled fatty acid from phosphatidylcholine to phosphatidylethanolamine was observed in prelabeled human erythrocytes reincubated in fresh serum. These data could have been explained by direct fatty acid transfer from phosphatidylcholine to phosphatidylethanolamine or by an apparent transfer simulated by either demethylation of labeled phosphatidylcholine to phosphatidylethanolamine or base-exchange of phosphatidylcholine with ethanolamine. To explore these possibilities, RBC containing phosphatidylcholine doubly labeled with palmitic acid-9,10-(3)H and with choline-1,2-(14)C were prepared. Upon reincubation in fresh serum, incorporation of (3)H (fatty acid) into phosphatidylethanolamine was observed without incorporation of (14)C (choline). In similar experiments in which RBC labeled with (3)H-labeled fatty acid alone were used, (14)C-ethanolamine added to the incubation was not incorporated into the isolated phosphatidylethanolamine which again showed incorporation of the fatty acid-(3)H. The data indicate that direct transfer of fatty acid from phosphatidylcholine to phosphatidylethanolamine can occur in human erythrocytes incubated in fresh serum.  相似文献   

16.
The lipids of gastrocnemius muscle from normal and dystrophic (dy) mice of the Bar Harbor, 129Re strain were studied. Animals were fed diets containing either 3.1% or 1.1% of total calories as linoleic acid. Lipid analyses were also done on muscle from a new mouse mutant, A2G-adr, which has abnormal muscle function, characterised by an arrested development of the righting response. These animals were fed the "high" linoleic acid diet only. Total lipid, triacylglycerol, and cholesterol were elevated in the 129Re-dy irrespective of the diet, whereas A2G-adr possessed significantly higher levels of cholesterol. Total phosphorus (micrograms P/g muscle) and cholesterol/phospholipid ratios were elevated in the dy strains only. Cardiolipin was raised in the dy ("low" linoleic diet) and adr muscle, whereas phosphatidylcholine was lower in the adr strain only. Linoleic acid esterified to phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine was elevated whereas arachidonic acid in phosphatidylserine was decreased in both mutants. Docosahexanoic acid (22:6) in all three dy phospholipids was decreased, independent of dietary treatment. The adr strain possessed normal levels of this fatty acid. The results specifically point to an abnormality in long-chain polyunsaturated fatty acid metabolism in gastrocnemius muscle in the 129Re-dy mutant; in the adr mutant they could reflect an abnormal increase in the number of muscle mitochondria.  相似文献   

17.
Few studies regarding the effects of elevated atmospheric CO(2) concentrations on plant lipid metabolism have been carried out. Here, the effects of elevated CO(2) concentration on lipid composition in mature seeds and in leaves during the diurnal cycle of Arabidopsis thaliana were investigated. Plants were grown in controlled climate chambers at elevated (800 ppm) and ambient CO(2) concentrations. Lipids were extracted and characterized using thin layer chromatography (TLC) and gas liquid chromatography. The fatty acid profile of total leaf lipids showed large diurnal variations. However, the elevated CO(2) concentration did not induce any significant differences in the diurnal pattern compared with the ambient concentration. The major chloroplast lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) were decreased at elevated CO(2) in favour of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Elevated CO(2) produced a 25% lower ratio of 16:1trans to 16:0 in PG compared with the ambient concentration. With good nutrient supply, growth at elevated CO(2) did not significantly affect single seed weight, total seed mass, oil yield per seed, or the fatty acid profile of the seeds. This study has shown that elevated CO(2) induced changes in leaf lipid composition in A. thaliana, whereas seed lipids were unaffected.  相似文献   

18.
The objective of this study was to investigate, using a pulse-chase technique, the different incorporation of (1-(14)C) n -9, n -6 and n 3 fatty acids into hepatoma lipids and their secretion to the culture medium. Docosahexaenoic acid (DHA) accumulated preferentially into the triacylglycerol while arachidonic acid (AA) did into the phospholipid fraction. DHA was poorly secreted to the culture medium whereas AA was secreted to a large extent. The fatty acids were initially esterified mainly into phosphatidylcholine and phosphatidylethanolamine. During the 24 h chase, a general shift from phosphatidylcholine to phosphatidylethanolamine was observed. Linoleic acid was esterified in cardiolipin to a much greater extent than any other fatty acid and it was not converted to more polyunsaturated fatty acids.The supplementation of the culture medium with polyunsaturated fatty acids had no inhibitory effect on the growth of the hepatoma cells, in marked contrast to observations made in other tumoral cells. The reasons for the resistance of the hepatoma cells to polyunsaturated fatty acid toxicity, including the possible antioxidant effect of linoleic acid accumulation in cardiolipin, are also discussed.  相似文献   

19.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

20.
Nutritional factors may be relative to attention-deficit hyperactive disorder (ADHD), although the pathogenic mechanism is still unknown. Based on the work of others, we hypothesized that children with ADHD have altered dietary patterns and fatty acid metabolism. Therefore, the aim of this study was to evaluate dietary patterns and the blood fatty acid composition in children with ADHD in the Taipei area of Taiwan. The present study found that 58 subjects with ADHD (average age 8.5 years) had significantly higher intakes of iron and vitamin C compared to those of 52 control subjects (average age 7.9 years) (P < 0.05). The blood total protein content in subjects with ADHD was significantly lower than that in control subjects (P < 0.05). On the other hand, children with ADHD had significantly higher blood iron levels compared to the control children (P < 0.05). Additionally, plasma gamma-linolenic acid (18:3 n-6) in children with ADHD was higher than that in control children (P < 0.05). Concerning the composition of other fatty acids in the phospholipid isolated from red blood cell (RBC) membranes, oleic acid (18:1n-9) was significantly higher, whereas nervonic acid (24:1n-9), linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosahexaenoic acid (22:6n-3) were significantly lower in subjects with ADHD (P < 0.05). Our results suggest that there were no differences in dietary patterns of these children with ADHD except for the intake of iron and vitamin C; however, the fatty acid composition of phospholipid from RBC membranes in the ADHD children differed from that of the normal children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号