共查询到20条相似文献,搜索用时 15 毫秒
1.
Speicher T Köhler UA Choukèr A Werner S Weiland T Wendel A 《The Journal of biological chemistry》2012,287(3):1837-1846
Fructose-induced hepatic ATP depletion prevents TNF-induced apoptosis, whereas it contrarily enhances CD95-induced hepatocyte apoptosis in vitro and in vivo. By contrast, transformed liver cells are not protected against TNF due to metabolic alterations, allowing selective tumor targeting. We analyzed the molecular mechanisms by which fructose modulates cytokine-induced apoptosis. A release of adenosine after fructose-induced ATP depletion, followed by a cAMP response, was demonstrated. Likewise, cAMP and adenosine mimicked per se the modulation by fructose of CD95- and TNF-induced apoptosis. The effects of fructose on cytokine-induced apoptosis were sensitive to inhibition of protein kinase A. Fructose prevented the pro-apoptotic, sustained phase of TNF-induced JNK signaling and thereby blocked bid-mediated activation of the intrinsic mitochondrial apoptosis pathway in a PKA-dependent manner. We explain the dichotomal effects of fructose on CD95- and TNF-induced cell death by the selective requirement of JNK signaling for the latter. These findings provide a mechanistic rationale for the protection of hepatocytes from TNF-induced cell death by pharmacological doses of fructose. 相似文献
2.
3.
4.
Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. 总被引:17,自引:3,他引:17 下载免费PDF全文
A lambda cDNA library was prepared from polyadenylated RNA isolated from quiescent human diploid FS-4 fibroblasts stimulated with tumor necrosis factor for 3 h. Differential screening was used to isolate cDNA sequences that are stimulated by tumor necrosis factor. Eight distinct tumor necrosis factor-stimulated gene sequences (designated TSG-1, -6, -8, -12, -14, -21, -27, and -37) were partially sequenced and compared with known sequences from GenBank. TSG-1 was identical to the gene for interleukin-8. TSG-8 corresponded to the gene for monocyte chemotactic and activating factor. TSG-21 and -27 were identical to the genes for collagenase and stromelysin, respectively. The other four sequences showed no homologies with known genes. Patterns of induction of mRNAs corresponding to the eight cloned cDNAs by various cytokines, growth factors, and activators of second messenger pathways were analyzed in FS-4 cells. 相似文献
5.
6.
7.
Tardy C Autefage H Garcia V Levade T Andrieu-Abadie N 《The Journal of biological chemistry》2004,279(51):52914-52923
Whereas caspases are essential components in apoptosis, other proteases seem to be involved in programmed cell death. This study investigated the role of lysosomal mannose 6-phosphorylated proteins in tumor necrosis factor (TNF)-induced apoptosis. We report that fibroblasts isolated from patients affected with inclusion-cell disease (ICD), having a deficient activity of almost all lysosomal hydrolases, are resistant to the toxic effect of TNF. These mutant cells exhibited a defect in TNF-induced caspase activation, Bid cleavage, and release of cytochrome c. In contrast, TNF-induced p42/p44 MAPK activation and CD54 expression remained unaltered. Human ICD lymphoblasts and fibroblasts derived from mice nullizygous for Igf2 and the two mannose 6-phosphate (M6P) receptors, Mpr300 and Mpr46, which develop an ICD-like phenotype, were also resistant to CD95 ligand and TNF, respectively. Moreover, correction of the lysosomal enzyme defect of ICD fibroblasts, using a medium enriched in M6P-containing proteins, enabled restoration of sensitivity to TNF. This effect was blocked by exogenous M6P but not by cathepsin B or L inhibitors. Altogether, these findings suggest that some M6P-bearing glycoproteins modulate the susceptibility to TNF-induced apoptosis. As a matter of fact, exogenous tripeptidyl peptidase 1, a lysosomal carboxypeptidase, could sensitize ICD fibroblasts to TNF. These observations highlight the hitherto unrecognized role of some mannose 6-phosphorylated proteins such as tripeptidyl peptidase 1 in the apoptotic cascade triggered by TNF. 相似文献
8.
Tumor necrosis factor alpha (TNFalpha) is associated with a higher risk of cardiovascular disease. Matrix metalloproteinase-2 (MMP-2) has been implicated in the pathophysiology of ischemic heart disease. However, the role of interactions between MMP-2 and TNFalpha, associated with cardiac apoptosis, is unknown. We hypothesized that MMP-2 will contribute to TNFalpha-induced myocardial apoptosis. After treatment with TNFalpha (1-20 ng/ml) for 24 h, or with TNFalpha (10 ng/ml) for 0, 6, 12, 24, or 48 h, MMP-2 activity, percent of TUNEL-positive myocytes, and DNA fragmentation dose, and time-dependently increased compared to control. However, TNFalpha blockade (neutralizing antibodies against human TNFalpha, 25 microg/ml) significantly reduced the activity of MMP-2 and markers of apoptosis induced by TNFalpha. Interestingly, MMP-2 antibody (30 microg/ml), or the MMP-2 inhibitors Doxycycline (Dox, 1-50 micromol/l) or GM6001 (GM, 10 micromol/l), prior to TNFalpha insult, decreased myocardial MMP-2 activity and reduced the percent of TUNEL-positive myocytes and DNA fragmentation. Moreover, MMP-2 inhibition reduced Bax expression and caspase3 activity, as well as increasing Bcl2 expression. MMP-2 inhibition was associated with decreased cardiac MMP-2 activity and decreased myocardial apoptosis induced by TNFalpha. These results suggest that MMP-2 contributes to TNFalpha-induced apoptosis in cultured rat cardiac myocytes. 相似文献
9.
The present study examined the effect of Cerium on protein synthesis in cultured cardiac myocytes and lung fibroblasts exposed to normal and markedly subnormal levels of Mg2+. Cerium was found to have a general inhibitory effect on protein synthesis in these cell types, including the synthesis of myofibrillar proteins in the cardiac myocytes. Further, the effect of the metal ion was more pronounced in cells exposed to the Mg2+-deficient medium. The possible implications of the observations are discussed. 相似文献
10.
K Scharffetter M Heckmann A Hatamochi C Mauch B Stein G Riethmüller H W Ziegler-Heitbrock T Krieg 《Experimental cell research》1989,181(2):409-419
The effect of tumor necrosis factor-alpha (TNF alpha) and interferon-gamma (IFN gamma) on collagen metabolism by human diploid fibroblasts in confluent monolayer culture was examined. Recombinant TNF alpha reduced collagen mRNA levels 2-fold and stimulated collagenase mRNA levels 5-fold, while recombinant IFN gamma affected only collagen mRNA levels. The combination of TNF alpha (10 ng/ml) and IFN gamma (100 ng/ml) resulted in a much stronger (about 30-fold) reduction of collagen mRNA levels indicating that the two cytokines act synergistically. In contrast no such synergism was observed with respect to collagenase mRNA levels. The effect of TNF alpha and IFN gamma on collagen metabolism reported here indicates a complex interaction of different cytokines in the control of tissue remodeling that occurs during inflammation, repair, or atrophy. 相似文献
11.
A Hamid Boulares Anna J Zoltoski Zaki A Sherif Alexander Yakovlev Mark E Smulson 《Biochemical and biophysical research communications》2002,290(2):796-801
DNA fragmentation factor (DFF) comprises DFF45 and DFF40 subunits, the former of which acts as an inhibitor of the latter (the catalytic subunit) and whose cleavage by caspase-3 results in DFF activation. Disruption of the DFF45 gene blocks the generation of 50-kb DNA fragments and confers resistance to apoptosis. We recently suggested that the early fragmentation of DNA by DFF and the consequent activation of poly(ADP-ribose) polymerase-1 (PARP-1), mitochondrial dysfunction, and activation of caspase-3 contribute to an amplification loop in the apoptotic process. To verify the existence of such a loop, we have now examined the effects of restoring DFF expression in DFF45-deficient fibroblasts. Co-transfection of mouse DFF45(-/-) fibroblasts with plasmids encoding human DFF40 and DFF45 reversed the apoptosis resistance normally observed in these cells. The DFF45(-/-) cells regained the ability to fragment their DNA into 50-kb pieces in response to TNF, which resulted in a marked activation of PARP-1 and a concomitant depletion of intracellular NAD. DFF expression also resulted in an increase both in cytochrome c release into the cytosol and in caspase-3 activation triggered by TNF. These results support the importance of DFF, PARP-1, mitochondria, and caspase-3 in an amplification phase of TNF-induced apoptosis. 相似文献
12.
《The Journal of cell biology》1996,133(2):325-334
Beginning during the second half of gestation, increasing numbers of cardiac myocytes withdraw from the cell cycle such that DNA synthesis is no longer detectable in these cells by neonatal day 17 in vivo. The mechanisms that exclude these and other terminally differentiated cells from the cell division cycle are poorly understood. To begin to explore the molecular basis of the barrier to G1/S progression in cardiac myocytes, we used adenoviruses to express wild-type and mutant E1A proteins in primary cultures from embryonic day 20 rats. While most of these cardiac myocytes are ordinarily refractory to DNA synthesis, even in the presence of serum growth factors, expression of wild-type E1A stimulates DNA synthesis in up to 94% or almost all successfully transduced cells. Rather than complete the cell cycle, however, these cells undergo apoptosis. Apoptosis is limited to those cells that engage in DNA synthesis, and the kinetics of the two processes suggest that DNA synthesis precedes apoptosis. Mutations in E1A that disable it from binding Rb and related pocket proteins have little effect on its ability to stimulate DNA synthesis in cardiac myocytes. In contrast, mutants that are defective in binding the cellular protein p300 stimulate DNA synthesis 2.4-4.1-fold less efficiently, even in the context of retained E1A pocket protein binding. In the absence of ElA pocket protein binding, the usual situation in the cell, loss of p300 binding severely decreases the ability of ElA to stimulate DNA synthesis. These results suggest that the barrier to G1/S progression in cardiac myocytes is mediated. at least in part, by the same molecules that gate the G1/S transition in actively cycling cells, and that p300 or related family members play an important role in this process. 相似文献
13.
14.
Tumor necrosis factor inhibits collagen and fibronectin synthesis in human dermal fibroblasts 总被引:5,自引:0,他引:5
Tumor necrosis factor (TNF) caused inhibition of collagen production by confluent cultures of human dermal fibroblasts in a dose-dependent manner. Concomitant increase of prostaglandin E2 release was observed as a result of TNF-induced cell activation. However, a blockade of the cyclooxygenase pathway of arachidonate metabolism by indomethacin did not abrogate the inhibitory effect of TNF on collagen synthesis, suggesting that this effect could be independent of prostaglandin metabolism. Gel electrophoresis of the newly synthesized macromolecules from the culture media showed that both type I and type III collagens as well as fibronectin were affected by the inhibition. Electrophoresis of cell layer-associated proteins demonstrated that the reduction in amounts of collagen and fibronectin in the medium did not result from an intracellular accumulation of these macromolecules. Production of procollagens was reduced in parallel to that of collagens, suggesting that the effect of TNF is exerted before the processing steps of procollagens. These results clearly show that TNF could play a role in modulation of matrix deposition by fibroblasts during inflammatory processes. 相似文献
15.
目的:通过观察N-乙酰半胱氨酸(NAC)对大鼠心脏成纤维细胞(CFs)增殖和胶原合成的影响,探讨NAC对心脏重构的作用。方法:以培养的新生SD大鼠CFs为实验对象,给予不同浓度的NAC进行干预,48小时后用MTT比色法检测CFs增殖水平,用3H脯氨酸掺入法测定总胶原合成。结果:与对照组相比,不同浓度NAC作用下的CFs增殖水平和3H脯氨酸掺入量均比对照组低,且具有浓度依赖性(p〈0.05)。结论:NAC能够抑制SD大鼠CFs增殖,并降低其胶原合成,因此NAC对心脏的病理性重构可能具有保护作用。 相似文献
16.
目的:通过观察N-乙酰半胱氨酸(NAC)对大鼠心脏成纤维细胞(CFs)增殖和胶原合成的影响,探讨NAC对心脏重构的作用。方法:以培养的新生SD大鼠CFs为实验对象,给予不同浓度的NAC进行干预,48小时后用MTT比色法检测CFs增殖水平,用3H脯氨酸掺入法测定总胶原合成。结果:与对照组相比,不同浓度NAC作用下的CFs增殖水平和3H脯氨酸掺入量均比对照组低,且具有浓度依赖性(p<0.05)。结论:NAC能够抑制SD大鼠CFs增殖,并降低其胶原合成,因此NAC对心脏的病理性重构可能具有保护作用。 相似文献
17.
Kuruvilla L Nair RR Umashankar PR Lal AV Kartha CC 《Cell biochemistry and biophysics》2007,47(1):65-72
Given that vascular endothelial cells play an important role in the modulation of vascular structure and function, we hypothesized
that endocardial endothelial cells (EECs) may have a modulator role in regulating the cardiac interstitial cells. Endocardial
endothelial cells were isolated from freshly collected pig hearts and cardiac fibroblasts were isolated from 3- to 4-d-old
Wistar rats. Fibroblasts were cultured in the presence or absence of conditioned medium from EECs. Proliferation of cardiac
fibroblasts was measured by the incorporation of [3H]-Thymidine and collagen synthesis was assayed by the incorporation of [3H]-proline. To determine the involvement of signaling mediators, in separate experiments, cardiac fibroblasts were incubated
with BQ123 (selective ETA receptor antagonist), PD142893 (nonselective ETA/ETB receptor antagonist), Bis-indolylmaleimide (PKC inhibitor), PD 098059 (MEK inhibitor), or neutralizing anti-transforming
growth factor (TGF)-β-antibody. Endocardial endothelium-derived factors endothelin (ET)-1, TGF-β, and Angiotensin (Ang)-II
in the conditioned medium were assayed by enzyme-linked immunosorbent assay using commercially available kits. We report here
evidence that suggest that endocardial endothelial cells stimulate both proliferation and collagen synthesis of cardiac fibroblasts.
The response seems to be mediated by endothelin through its ETA receptor.
Our results also indicate that protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) pathways are essential for
the EEC-induced proliferation of cardiac fibroblasts. 相似文献
18.
Phospholipase A(2) of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase and phospholipase A(2) (PLA(2)) activities. Although the cellular function of the peroxidase of Prdx6 has been well elucidated, the function of the PLA(2) of Prdx6 is largely unknown. Here, we report a novel function for the PLA(2) in regulating TNF-induced apoptosis through arachidonic acid (AA) release and interleukin-1β (IL-1β) production. Prdx6 knockdown (Prdx6(KD)) in human bronchial epithelial cells (BEAS2B) shows severe decreases of peroxidase and PLA(2) activities. Surprisingly, Prdx6(KD) cells are markedly resistant to apoptosis induced by TNF-α in the presence of cycloheximide, but are highly sensitive to hydrogen peroxide-induced apoptosis. Furthermore, the release of AA and the production of IL-1β induced by proinflammatory stimuli, such as TNF-α, LPS, and poly I/C, are severely decreased in Prdx6(KD) cells. More interestingly, the restoration of Prdx6 expression with wild-type Prdx6, but not PLA(2)-mutant Prdx6 (S32A), in Prdx6(KD) cells dramatically induces the recovery of TNF-induced apoptosis, AA release, and IL-1β production, indicating specific roles for the PLA(2) activity of Prdx6. Our results provide new insights into the distinct roles of bifunctional Prdx6 with peroxidase and PLA(2) activities in oxidative stress-induced and TNF-induced apoptosis, respectively. 相似文献
19.